6 resultados para Simulations, Quantum Models, Resonant Tunneling Diode

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein folding occurs on a time scale ranging from milliseconds to minutes for a majority of proteins. Computer simulation of protein folding, from a random configuration to the native structure, is nontrivial owing to the large disparity between the simulation and folding time scales. As an effort to overcome this limitation, simple models with idealized protein subdomains, e.g., the diffusion–collision model of Karplus and Weaver, have gained some popularity. We present here new results for the folding of a four-helix bundle within the framework of the diffusion–collision model. Even with such simplifying assumptions, a direct application of standard Brownian dynamics methods would consume 10,000 processor-years on current supercomputers. We circumvent this difficulty by invoking a special Brownian dynamics simulation. The method features the calculation of the mean passage time of an event from the flux overpopulation method and the sampling of events that lead to productive collisions even if their probability is extremely small (because of large free-energy barriers that separate them from the higher probability events). Using these developments, we demonstrate that a coarse-grained model of the four-helix bundle can be simulated in several days on current supercomputers. Furthermore, such simulations yield folding times that are in the range of time scales observed in experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent signaling resolution models of parent–offspring conflict have provided an important framework for theoretical and empirical studies of communication and parental care. According to these models, signaling of need is stabilized by its cost. However, our computer simulations of the evolutionary dynamics of chick begging and parental investment show that in Godfray’s model the signaling equilibrium is evolutionarily unstable: populations that start at the signaling equilibrium quickly depart from it. Furthermore, the signaling and nonsignaling equilibria are linked by a continuum of equilibria where chicks above a certain condition do not signal and we show that, contrary to intuition, fitness increases monotonically as the proportion of young that signal decreases. This result forces us to reconsider much of the current literature on signaling of need and highlights the need to investigate the evolutionary stability of signaling equilibria based on the handicap principle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study explores a “hydrophobic” energy function for folding simulations of the protein lattice model. The contribution of each monomer to conformational energy is the product of its “hydrophobicity” and the number of contacts it makes, i.e., E(h⃗, c⃗) = −Σi=1N cihi = −(h⃗.c⃗) is the negative scalar product between two vectors in N-dimensional cartesian space: h⃗ = (h1, … , hN), which represents monomer hydrophobicities and is sequence-dependent; and c⃗ = (c1, … , cN), which represents the number of contacts made by each monomer and is conformation-dependent. A simple theoretical analysis shows that restrictions are imposed concomitantly on both sequences and native structures if the stability criterion for protein-like behavior is to be satisfied. Given a conformation with vector c⃗, the best sequence is a vector h⃗ on the direction upon which the projection of c⃗ − c̄⃗ is maximal, where c̄⃗ is the diagonal vector with components equal to c̄, the average number of contacts per monomer in the unfolded state. Best native conformations are suggested to be not maximally compact, as assumed in many studies, but the ones with largest variance of contacts among its monomers, i.e., with monomers tending to occupy completely buried or completely exposed positions. This inside/outside segregation is reflected on an apolar/polar distribution on the corresponding sequence. Monte Carlo simulations in two dimensions corroborate this general scheme. Sequences targeted to conformations with large contact variances folded cooperatively with thermodynamics of a two-state transition. Sequences targeted to maximally compact conformations, which have lower contact variance, were either found to have degenerate ground state or to fold with much lower cooperativity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Senile plaques associated with Alzheimer's disease contain deposits of fibrils formed by 39- to 43-residue β-amyloid peptides with possible neurotoxic effects. X-ray diffraction measurements on oriented fibril bundles have indicated an extended β-sheet structure for Alzheimer's β-amyloid fibrils and other amyloid fibrils, but the supramolecular organization of the β-sheets and other structural details are not well established because of the intrinsically noncrystalline, insoluble nature of amyloid fibrils. Here we report solid-state NMR measurements, using a multiple quantum (MQ) 13C NMR technique, that probe the β-sheet organization in fibrils formed by the full-length, 40-residue β-amyloid peptide (Aβ1–40). Although an antiparallel β-sheet organization often is assumed and is invoked in recent structural models for full-length β-amyloid fibrils, the MQNMR data indicate an in-register, parallel organization. This work provides site-specific, atomic-level structural constraints on full-length β-amyloid fibrils and applies MQNMR to a significant problem in structural biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We summarize studies of earthquake fault models that give rise to slip complexities like those in natural earthquakes. For models of smooth faults between elastically deformable continua, it is critical that the friction laws involve a characteristic distance for slip weakening or evolution of surface state. That results in a finite nucleation size, or coherent slip patch size, h*. Models of smooth faults, using numerical cell size properly small compared to h*, show periodic response or complex and apparently chaotic histories of large events but have not been found to show small event complexity like the self-similar (power law) Gutenberg-Richter frequency-size statistics. This conclusion is supported in the present paper by fully inertial elastodynamic modeling of earthquake sequences. In contrast, some models of locally heterogeneous faults with quasi-independent fault segments, represented approximately by simulations with cell size larger than h* so that the model becomes "inherently discrete," do show small event complexity of the Gutenberg-Richter type. Models based on classical friction laws without a weakening length scale or for which the numerical procedure imposes an abrupt strength drop at the onset of slip have h* = 0 and hence always fall into the inherently discrete class. We suggest that the small-event complexity that some such models show will not survive regularization of the constitutive description, by inclusion of an appropriate length scale leading to a finite h*, and a corresponding reduction of numerical grid size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate quantum mechanical simulations of the primary charge transfer in photosynthetic reaction centers are reported. The process is modeled by three coupled electronic states corresponding to the photoexcited chlorophyll special pair (donor), the reduced bacteriopheophytin (acceptor), and the reduced accessory chlorophyll (bridge) that interact with a dissipative medium of protein and solvent degrees of freedom. The time evolution of the excited special pair is followed over 17 ps by using a fully quantum mechanical path integral scheme. We find that a free energy of the reduced accessory chlorophyll state approximately equal to 400 cm(-1) lower than that of the excited special pair state yields state populations in agreement with experimental results on wild-type and modified reaction centers. For this energetic configuration electron transfer is a two-step process.