2 resultados para Simpson, Robert

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most methods for assessment of chromatin structure involve chemical or nuclease damage to DNA followed by analysis of distribution and susceptibility of cutting sites. The agents used generally do not permeate cells, making nuclear isolation mandatory. In vivo mapping strategies might allow detection of labile constituents and/or structures that are lost when chromatin is swollen in isolated nuclei at low ionic strengths. DNase I has been the most widely used enzyme to detect chromatin sites where DNA is active in transcription, replication or recombination. We have introduced the bovine DNase I gene into yeast under control of a galactose-responsive promoter. Expression of the nuclease leads to DNA degradation and cell death. Shorter exposure to the active enzyme allows mapping of chromatin structure in whole cells without isolation of nuclei. The validity and efficacy of the strategy are demonstrated by footprinting a labile repressor bound to its operator. Investigation of the inter-nucleosome linker regions in several types of repressed domains has revealed different degrees of protection in cells, relative to isolated nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suppressors of cytokine signaling (SOCS) family of proteins act as intracellular inhibitors of several cytokine signal transduction pathways. Their expression is induced by cytokine activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and they act as a negative feedback loop by subsequently inhibiting the JAK/STAT pathway either by direct interaction with activated JAKs or with the receptors. These interactions are mediated at least in part by the SH2 domain of SOCS proteins but these proteins also contain a highly conserved C-terminal homology domain termed the SOCS box. Here we show that the SOCS box mediates interactions with elongins B and C, which in turn may couple SOCS proteins and their substrates to the proteasomal protein degradation pathway. Analogous to the family of F-box-containing proteins, it appears that the SOCS proteins may act as adaptor molecules that target activated cell signaling proteins to the protein degradation pathway.