3 resultados para Signalized Intersections
em National Center for Biotechnology Information - NCBI
Resumo:
Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived “dark” states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.
Resumo:
Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4–0.6 μm wide, forming an orthogonal honeycomb network in a surface zone 50 μm thick, with 2–3 × 106 intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth’s surface by ∼3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial “soup.” Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.
Resumo:
Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal–chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al–OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich “soup.” Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments.