6 resultados para Shoulder harnesses.

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1979, Lewontin and I borrowed the architectural term “spandrel” (using the pendentives of San Marco in Venice as an example) to designate the class of forms and spaces that arise as necessary byproducts of another decision in design, and not as adaptations for direct utility in themselves. This proposal has generated a large literature featuring two critiques: (i) the terminological claim that the spandrels of San Marco are not true spandrels at all and (ii) the conceptual claim that they are adaptations and not byproducts. The features of the San Marco pendentives that we explicitly defined as spandrel-properties—their necessary number (four) and shape (roughly triangular)—are inevitable architectural byproducts, whatever the structural attributes of the pendentives themselves. The term spandrel may be extended from its particular architectural use for two-dimensional byproducts to the generality of “spaces left over,” a definition that properly includes the San Marco pendentives. Evolutionary biology needs such an explicit term for features arising as byproducts, rather than adaptations, whatever their subsequent exaptive utility. The concept of biological spandrels—including the examples here given of masculinized genitalia in female hyenas, exaptive use of an umbilicus as a brooding chamber by snails, the shoulder hump of the giant Irish deer, and several key features of human mentality—anchors the critique of overreliance upon adaptive scenarios in evolutionary explanation. Causes of historical origin must always be separated from current utilities; their conflation has seriously hampered the evolutionary analysis of form in the history of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different cDNA clones encoding a rat homeobox gene and the mouse homologue OG-12 were cloned from adult rat brain and mouse embryo mRNA, respectively. The predicted amino acid sequences of the proteins belong to the paired-related subfamily of homeodomain proteins (Prx homeodomains). Hence, the gene was named Prx3 and the mouse and rat genes are indicated as mPrx3 and rPrx3, respectively. In the mouse as well as in the rat, the predicted Prx3 proteins share the homeodomain but have three different N termini, a 12-aa residue variation in the C terminus, and contain a 14-aa residue motif common to a subset of homeodomain proteins, termed the “aristaless domain.” Genetic mapping of Prx3 in the mouse placed this gene on chromosome 3. In situ hybridization on whole mount 12.5-day-old mouse embryos and sections of rat embryos at 14.5 and 16.5 days postcoitum revealed marked neural expression in discrete regions in the lateral and medial geniculate complex, superior and inferior colliculus, the superficial gray layer of the superior colliculus, pontine reticular formation, and inferior olive. In rat and mouse embryos, nonneuronal structures around the oral cavity and in hip and shoulder regions also expressed the Prx3 gene. In the adult rat brain, Prx3 gene expression was restricted to thalamic, tectal, and brainstem structures that include relay nuclei of the visual and auditory systems as well as other ascending systems conveying somatosensory information. Prx3 may have a role in specifying neural systems involved in processing somatosensory information, as well as in face and body structure formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fossil primates have been known from the late middle to late Eocene Pondaung Formation of Myanmar since the description of Pondaungia cotteri in 1927. Three additional primate taxa, Amphipithecus mogaungensis, Bahinia pondaungensis and Myanmarpithecus yarshensis, were subsequently described. These primates are represented mostly by fragmentary dental and cranial remains. Here we describe the first primate postcrania from Myanmar, including a complete left humerus, a fragmentary right humerus, parts of left and right ulnae, and the distal half of a left calcaneum, all representing one individual. We assign this specimen to a large species of Pondaungia based on body size and the known geographic distribution and diversity of Myanmar primates. Body weight estimates of Pondaungia range from 4,000 to 9,000 g, based on humeral length, humeral midshaft diameter, and tooth area by using extant primate regressions. The humerus and ulna indicate that Pondaungia was capable of a wide variety of forelimb movements, with great mobility at the shoulder joint. Morphology of the distal calcaneus indicates that the hind feet were mobile at the transverse tarsal joint. Postcrania of Pondaungia present a mosaic of features, some shared in common with notharctine and adapine adapiforms, some shared with extant lorises and cebids, some shared with fossil anthropoids, and some unique. Overall, Pondaungia humeral and calcaneal morphology is most consistent with that of other known adapiforms. It does not support the inclusion of Pondaungia in Anthropoidea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction.