7 resultados para Sherwood, M. E. W. (Mary Elizabeth Wilson), 1826-1903.
em National Center for Biotechnology Information - NCBI
Resumo:
Previous work has revealed a cytoplasmic pool of flagellar precursor proteins capable of contributing to the assembly of new flagella, but how and where these components assemble is unknown. We tested Chlamydomonas outer-dynein arm subunit stability and assembly in the cytoplasm of wild-type cells and 11 outer dynein arm assembly mutant strains (oda1-oda11) by Western blotting of cytoplasmic extracts, or immunoprecipitates from these extracts, with five outer-row dynein subunit-specific antibodies. Western blots reveal that at least three oda mutants (oda6, oda7, and oda9) alter the level of a subunit that is not the mutant gene product. Immunoprecipitation shows that large preassembled flagellar complexes containing all five tested subunits (three heavy chains and two intermediate chains) exist within wild-type cytoplasm. When the preassembly of these subunits was examined in oda strains, we observed three patterns: complete coassembly (oda 1, 3, 5, 8, and 10), partial coassembly (oda7 and oda11), and no coassembly (oda2, 6, and 9) of the four tested subunits with HCβ. Our data, together with previous studies, suggest that flagellar outer-dynein arms preassemble into a complete Mr ≃ 2 × 106 dynein arm that resides in a cytoplasmic precursor pool before transport into the flagellar compartment.
Resumo:
The Arabidopsis GA3 cDNA was expressed in yeast (Saccharomyces cerevisiae) and the ability of the transformed yeast cells to metabolize ent-kaurene was tested. We show by full-scan gas chromatography-mass spectrometry that the transformed cells produce ent-kaurenoic acid, and demonstrate that the single enzyme GA3 (ent-kaurene oxidase) catalyzes the three steps of gibberellin biosynthesis from ent-kaurene to ent-kaurenoic acid.
Resumo:
Pollen tubes navigate the route from stigma to ovule with great accuracy, but the cues that guide them along this route are not known. We reproduced the environment on the stigma of Nicotiana alata by immersing pollen in stigma exudate or oil close to an interface with an aqueous medium. The growth of pollen in this culture system mimicked growth on stigmas: pollen grains hydrated and germinated, and pollen tubes grew toward the aqueous medium. The rate-limiting step in pollen germination was the movement of water through the surrounding exudate or oil. By elimination of other potential guidance cues, we conclude that the directional supply of water probably determined the axis of polarity of pollen tubes and resulted in growth toward the interface. We propose that a gradient of water in exudate is a guidance cue for pollen tubes on the stigma and that the composition of the exudate must be such that it is permeable enough for pollen hydration to occur but not so permeable that the supply of water becomes nondirectional. Pollen tube penetration of the stigma may be the most frequently occurring hydrotropic response of higher plants.
Resumo:
The delivery of copper to specific sites within the cell is mediated by distinct intracellular carrier proteins termed copper chaperones. Previous studies in Saccharomyces cerevisiae suggested that the human copper chaperone HAH1 may play a role in copper trafficking to the secretory pathway of the cell. In this current study, HAH1 was detected in lysates from multiple human cell lines and tissues as a single-chain protein distributed throughout the cytoplasm and nucleus. Studies with a glutathione S-transferase-HAH1 fusion protein demonstrated direct protein–protein interaction between HAH1 and the Wilson disease protein, which required the cysteine copper ligands in the amino terminus of HAH1. Consistent with these in vitro observations, coimmunoprecipitation experiments revealed that HAH1 interacts with both the Wilson and Menkes proteins in vivo and that this interaction depends on available copper. When these studies were repeated utilizing three disease-associated mutations in the amino terminus of the Wilson protein, a marked diminution in HAH1 interaction was observed, suggesting that impaired copper delivery by HAH1 constitutes the molecular basis of Wilson disease in patients harboring these mutations. Taken together, these data provide a mechanism for the function of HAH1 as a copper chaperone in mammalian cells and demonstrate that this protein is essential for copper homeostasis.
Resumo:
Childhood exposure to low-level lead can permanently reduce intelligence, but the neurobiologic mechanism for this effect is unknown. We examined the impact of lead exposure on the development of cortical columns, using the rodent barrel field as a model. In all areas of mammalian neocortex, cortical columns constitute a fundamental structural unit subserving information processing. Barrel field cortex contains columnar processing units with distinct clusters of layer IV neurons that receive sensory input from individual whiskers. In this study, rat pups were exposed to 0, 0.2, 1, 1.5, or 2 g/liter lead acetate in their dam's drinking water from birth through postnatal day 10. This treatment, which coincides with the development of segregated columns in the barrel field, produced blood lead concentrations from 1 to 31 μg/dl. On postnatal day 10, the area of the barrel field and of individual barrels was measured. A dose-related reduction in barrel field area was observed (Pearson correlation = −0.740; P < 0.001); mean barrel field area in the highest exposure group was decreased 12% versus controls. Individual barrels in the physiologically more active caudoventral group were affected preferentially. Total cortical area measured in the same sections was not altered significantly by lead exposure. These data support the hypothesis that lead exposure may impair the development of columnar processing units in immature neocortex. We demonstrate that low levels of blood lead, in the range seen in many impoverished inner-city children, cause structural alterations in a neocortical somatosensory map.