2 resultados para Sexual hormones
em National Center for Biotechnology Information - NCBI
Resumo:
With assays of hormone-sensitive behaviors, it is possible to demonstrate both direct and indirect actions of genes on mammalian social behaviors. Direct effects of estrogen receptor gene expression and progesterone receptor gene expression figure prominently in well analyzed neuroendocrine mechanisms for sex behavior, operating through a neural circuit that has been delineated. Indirect effects, notably the consequences of sexual differentiation, display complex dependencies. In a human condition, Kallmann syndrome, the data show a clear, indirect genetic influence on an important human social behavior, in which damage at chromosome Xp-22.3 works through at least six discrete steps to affect libido. Altogether, simplistic extrapolations from lower animals, especially during brief summaries for nonscientists, do not appear justified as we discover and conceptualize genetic influences on mammalian brain and behavior.
Resumo:
Whereas adult sex differences in brain morphology and behavior result from developmental exposure to steroid hormones, the mechanism by which steroids differentiate the brain is unknown. Studies to date have described subtle sex differences in levels of proteins and neurotransmitters during brain development, but these have lacked explanatory power for the profound sex differences induced by steroids. We report here a major divergence in the response to injection of the γ-aminobutyric acid type A (GABAA) agonist, muscimol, in newborn male and female rats. In females, muscimol treatment primarily decreased the phosphorylation of cAMP response element binding protein (CREB) within the hypothalamus and the CA1 region of the hippocampus. In contrast, muscimol increased the phosphorylation of CREB in males within these same brain regions. Within the arcuate nucleus, muscimol treatment increased the phosphorylation of CREB in both females and males. Thus, the response to GABA can be excitatory or inhibitory on signal-transduction pathways that alter CREB phosphorylation depending on the sex and the region in developing brain. This divergence in response to GABA allows for a previously unknown form of steroid-mediated neuronal plasticity and may be an initial step in establishing sexually dimorphic signal-transduction pathways in developing brain.