2 resultados para Sewage purification nutrient removal

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20–30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pyruvate dehydrogenase complex was partially purified and characterized from etiolated maize (Zea mays L.) shoot mitochondria. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed proteins of 40, 43, 52 to 53, and 62 to 63 kD. Immunoblot analyses identified these proteins as the E1β-, E1α-, E2-, and E3-subunits, respectively. The molecular mass of maize E2 is considerably smaller than that of other plant E2 subunits (76 kD). The activity of the maize mitochondrial complex has a pH optimum of 7.5 and a divalent cation requirement best satisfied by Mg2+. Michaelis constants for the substrates were 47, 3, 77, and 1 μm for pyruvate, coenzyme A (CoA), NAD+, and thiamine pyrophosphate, respectively. The products NADH and acetyl-CoA were competitive inhibitors with respect to NAD+ and CoA, and the inhibition constants were 15 and 47 μm, respectively. The complex was inactivated by phosphorylation and was reactivated after the removal of ATP and the addition of Mg2+.