8 resultados para Set of Weak Stationary Dynamic Actions

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

sqv (squashed vulva) genes comprise a set of eight independent loci in Caenorhabditis elegans required zygotically for the invagination of vulval epithelial cells and maternally for normal oocyte formation and embryogenesis. Sequencing of sqv-3, sqv-7, and sqv-8 suggested a role for the encoded proteins in glycolipid or glycoprotein biosynthesis. Using a combination of in vitro analysis of SQV enzymatic activities, sqv+-mediated rescue of vertebrate cell lines, and biochemical characterization of sqv mutants, we show that sqv-3, -7, and -8 all affect the biosynthesis of glycosaminoglycans and therefore compromise the function of one specific class of glycoconjugates, proteoglycans. These findings establish the importance of proteoglycans and their associated glycosaminoglycans in epithelial morphogenesis and patterning during C. elegans development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have systematically characterized gene expression patterns in 49 adult and embryonic mouse tissues by using cDNA microarrays with 18,816 mouse cDNAs. Cluster analysis defined sets of genes that were expressed ubiquitously or in similar groups of tissues such as digestive organs and muscle. Clustering of expression profiles was observed in embryonic brain, postnatal cerebellum, and adult olfactory bulb, reflecting similarities in neurogenesis and remodeling. Finally, clustering genes coding for known enzymes into 78 metabolic pathways revealed a surprising coordination of expression within each pathway among different tissues. On the other hand, a more detailed examination of glycolysis revealed tissue-specific differences in profiles of key regulatory enzymes. Thus, by surveying global gene expression by using microarrays with a large number of elements, we provide insights into the commonality and diversity of pathways responsible for the development and maintenance of the mammalian body plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although transcription and pre-mRNA processing are colocalized in eukaryotic nuclei, molecules linking these processes have not previously been described. We have identified four novel rat proteins by their ability to interact with the repetitive C-terminal domain (CTD) of RNA polymerase II in a yeast two-hybrid assay. A yeast homolog of one of the rat proteins has also been shown to interact with the CTD. These CTD-binding proteins are all similar to the SR (serine/arginine-rich) family of proteins that have been shown to be involved in constitutive and regulated splicing. In addition to alternating Ser-Arg domains, these proteins each contain discrete N-terminal or C-terminal CTD-binding domains. We have identified SR-related proteins in a complex that can be immunoprecipitated from nuclear extracts with antibodies directed against RNA polymerase II. In addition, in vitro splicing is inhibited either by an antibody directed against the CTD or by wild-type but not mutant CTD peptides. Thus, these results suggest that the CTD and a set of CTD-binding proteins may act to physically and functionally link transcription and pre-mRNA processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three members of the Brn-3 family of POU domain transcription factors are found in highly restricted sets of central nervous system neurons. Within the retina, these factors are present only within subsets of ganglion cells. We show here that in the developing mouse retina, Brn-3b protein is first observed in presumptive ganglion cell precursors as they begin to migrate from the zone of dividing neuroblasts to the future ganglion cell layer, and that targeted disruption of the Brn-3b gene leads in the homozygous state to a selective loss of 70% of retinal ganglion cells. In Brn-3b (-/-) mice other neurons within the retina and brain are minimally or not at all affected. These experiments indicate that Brn-3b plays an essential role in the development of specific ganglion cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activity-dependent plasticity is thought to underlie both formation of appropriate synaptic connections during development and reorganization of adult cortical topography. We have recently cloned many candidate plasticity-related genes (CPGs) induced by glutamate-receptor activation in the hippocampus. Screening the CPG pool for genes that may contribute to neocortical plasticity resulted in the identification of six genes that are induced in adult visual cortical areas in response to light. These genes are also naturally induced during postnatal cortical development. CPG induction by visual stimulation occurs primarily in neurons located in cortical layers II-III and VI and persists for at least 48 hr. Four of the visually responsive CPGs (cpg2, cpg15, cpg22, cpg29) are previously unreported genes, one of which (cpg2) predicts a "mini-dystrophin-like" structural protein. These results lend molecular genetic support to physiological and anatomical studies showing activity-dependent structural reorganization in adult cortex. In addition, these results provide candidate genes the function of which may underlie mechanisms of adult cortical reorganization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oscillating electric fields can be rectified by proteins in cell membranes to give rise to a dc transport of a substance across the membrane or a net conversion of a substrate to a product. This provides a basis for signal averaging and may be important for understanding the effects of weak extremely low frequency (ELF) electric fields on cellular systems. We consider the limits imposed by thermal and "excess" biological noise on the magnitude and exposure duration of such electric field-induced membrane activity. Under certain circumstances, the excess noise leads to an increase in the signal-to-noise ratio in a manner similar to processes labeled "stochastic resonance." Numerical results indicate that it is difficult to reconcile biological effects with low field strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the reactivity of IgM with self-antigens in tissues by a quantitative immunoblotting technique showed striking invariance among newborns in the human and in the mouse. The self-reactive repertoire of IgM of adults was also markedly conserved; it comprised most anti-self reactivities that prevailed among neonates. Multivariate analysis confirmed the homogeneity of IgM repertoires of neonates toward self- and non-self-antigens. Multivariate analysis discriminated between newborn and adult repertoires for reactivity with two of five sources of self-proteins and with non-self-antigens. Our observations support the concept that naturally activated B lymphocytes are selected early in development and throughout life for reactivity with a restricted set of self-antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coelomocytes, the heterogeneous population of sea urchin putative immune cells, were found to express a complex set of transcripts featuring scavenger receptor cysteine-rich (SRCR) repeats. SRCR domains define a metazoan superfamily of proteins, many of which are implicated in development and regulation of the immune system of vertebrates. Coelomocytes transcribe multiple SRCR genes from among a multigene family encoding an estimated number of 1,200 SRCR domains in specific patterns particular to each individual. Transcription levels for given SRCR genes may range from pronounced to undetectable, yet all tested animals harbor the genomic loci encoding these genes. Analysis of several SRCR genes revealed multiple loci corresponding to each type. In the case of one SRCR type, a cluster of at least three genes was detected within a 133-kb bacterial artificial chromosome insert, and conserved as well as unique regions were identified in sequences of three genomic clones derived from a single animal. Array hybridizations with repeated samples of coelomocyte messages revealed substantial alterations in levels of expression of many SRCR genes, with fluctuations of up to 10-fold in 1 week and up to 30-fold over a period of 3 months. This report is the first demonstration of genomic and transcriptional complexity in molecules expressed by invertebrate coelomocytes. The mechanisms controlling SRCR gene expression and the functional significance of this dynamic system await elucidation.