2 resultados para Sensory Detection.

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hair cell, the sensory receptor of the internal ear, transduces mechanical stimuli into electrical responses. Transduction results from displacement of the hair bundle, a cluster of rod-shaped stereocilia extending from the cell's apical surface. Biophysical experiments indicate that, by producing shear between abutting stereocilia, a bundle displacement directly opens cation-selective transduction channels. Specific models of gating depend on the location of these channels, which has been controversial: although some physiological and immunocytochemical experiments have situated the transduction channels at the hair bundle's top, monitoring of fluorescence signals from the Ca2+ indicator fura-2 has instead suggested that Ca2+ traverses channels at the bundle's base. To examine the site of Ca2+ entry through transduction channels, we used laser-scanning confocal microscopy, with a spatial resolution of < 1 micron and a temporal resolution of < 2 ms, to observe hair cells filled with the indicator fluo-3. An unstimulated hair cell showed a "tip blush" of enhanced fluorescence at the hair bundle's top, which we attribute to Ca2+ permeation through transduction channels open at rest. Upon mechanical stimulation, individual stereocilia displayed increased fluorescence that originated near their tips, then spread toward their bases. Our results confirm that mechanoelectrical transduction occurs near stereociliary tips.