2 resultados para Sensor of electric measures
em National Center for Biotechnology Information - NCBI
Resumo:
This paper decomposes the conventional measure of selection bias in observational studies into three components. The first two components are due to differences in the distributions of characteristics between participant and nonparticipant (comparison) group members: the first arises from differences in the supports, and the second from differences in densities over the region of common support. The third component arises from selection bias precisely defined. Using data from a recent social experiment, we find that the component due to selection bias, precisely defined, is smaller than the first two components. However, selection bias still represents a substantial fraction of the experimental impact estimate. The empirical performance of matching methods of program evaluation is also examined. We find that matching based on the propensity score eliminates some but not all of the measured selection bias, with the remaining bias still a substantial fraction of the estimated impact. We find that the support of the distribution of propensity scores for the comparison group is typically only a small portion of the support for the participant group. For values outside the common support, it is impossible to reliably estimate the effect of program participation using matching methods. If the impact of participation depends on the propensity score, as we find in our data, the failure of the common support condition severely limits matching compared with random assignment as an evaluation estimator.
Resumo:
Application of electric fields tangent to the plane of a confined patch of fluid bilayer membrane can create lateral concentration gradients of the lipids. A thermodynamic model of this steady-state behavior is developed for binary systems and tested with experiments in supported lipid bilayers. The model uses Flory’s approximation for the entropy of mixing and allows for effects arising when the components have different molecular areas. In the special case of equal area molecules the concentration gradient reduces to a Fermi–Dirac distribution. The theory is extended to include effects from charged molecules in the membrane. Calculations show that surface charge on the supporting substrate substantially screens electrostatic interactions within the membrane. It also is shown that concentration profiles can be affected by other intermolecular interactions such as clustering. Qualitative agreement with this prediction is provided by comparing phosphatidylserine- and cardiolipin-containing membranes.