5 resultados para Semidry stigma
em National Center for Biotechnology Information - NCBI
Resumo:
Self-incompatibility in Brassica is controlled by a single multi-allelic locus (S locus), which contains at least two highly polymorphic genes expressed in the stigma: an S glycoprotein gene (SLG) and an S receptor kinase gene (SRK). The putative ligand-binding domain of SRK exhibits high homology to the secretory protein SLG, and it is believed that SLG and SRK form an active receptor kinase complex with a self-pollen ligand, which leads to the rejection of self-pollen. Here, we report 31 novel SLG sequences of Brassica oleracea and Brassica campestris. Sequence comparisons of a large number of SLG alleles and SLG-related genes revealed the following points. (i) The striking sequence similarity observed in an inter-specific comparison (95.6% identity between SLG14 of B. oleracea and SLG25 of B. campestris in deduced amino acid sequence) suggests that SLG diversification predates speciation. (ii) A perfect match of the sequences in hypervariable regions, which are thought to determine S specificity in an intra-specific comparison (SLG8 and SLG46 of B. campestris) and the observation that the hypervariable regions of SLG and SRK of the same S haplotype were not necessarily highly similar suggests that SLG and SRK bind different sites of the pollen ligand and that they together determine S specificity. (iii) Comparison of the hypervariable regions of SLG alleles suggests that intragenic recombination, together with point mutations, has contributed to the generation of the high level of sequence variation in SLG alleles. Models for the evolution of SLG/SRK are presented.
Resumo:
Although S-locus RNases (S-RNases) determine the specificity of pollen rejection in self-incompatible (SI) solanaceous plants, they alone are not sufficient to cause S-allele-specific pollen rejection. To identify non-S-RNase sequences that are required for pollen rejection, a Nicotiana alata cDNA library was screened by differential hybridization. One clone, designated HT, hybridized strongly to RNA from N. alata styles but not to RNA from Nicotiana plumbaginifolia, a species known to lack one or more factors necessary for S-allele-specific pollen rejection. Sequence analysis revealed a 101-residue ORF including a putative secretion signal and an asparagine-rich domain near the C terminus. RNA blot analysis showed that the HT-transcript accumulates in the stigma and style before anthesis. The timing of HT-expression lags slightly behind SC10-RNase in SI N. alata SC10SC10 and is well correlated with the onset of S-allele-specific pollen rejection in the style. An antisense-HT construct was prepared to test for a role in pollen rejection. Transformed (N. plumbaginifolia × SI N. alata SC10SC10) hybrids with reduced levels of HT-protein continued to express SC10-RNase but failed to reject SC10-pollen. Control hybrids expressing both SC10-RNase and HT-protein showed a normal S-allele-specific pollen rejection response. We conclude that HT-protein is directly implicated in pollen rejection.
Resumo:
Many flowering plants possess self-incompatibility (SI) systems that prevent inbreeding. In Brassica, SI is controlled by a single polymorphic locus, the S locus. Two highly polymorphic S locus genes, SLG (S locus glycoprotein) and SRK (S receptor kinase), have been identified, both of which are expressed predominantly in the stigmatic papillar cell. We have shown recently that SRK is the determinant of the S haplotype specificity of the stigma. SRK is thought to serve as a receptor for a pollen ligand, which presumably is encoded by another polymorphic gene at the S locus. We previously have identified an S locus gene, SP11 (S locus protein 11), of the S9 haplotype of Brassica campestris and proposed that it potentially encodes the pollen ligand. SP11 is a novel member of the PCP (pollen coat protein) family of proteins, some members of which have been shown to interact with SLG. In this work, we identified the SP11 gene from three additional S haplotypes and further characterized the gene. We found that (i) SP11 showed an S haplotype-specific sequence polymorphism; (ii) SP11 was located in the immediate flanking region of the SRK gene of the four S haplotypes examined; (iii) SP11 was expressed in the tapetum of the anther, a site consistent with sporophytic control of Brassica SI; and (iv) recombinant SP11 of the S9 haplotype applied to papillar cells of S9 stigmas, but not of S8 stigmas, elicited SI response, resulting in inhibition of hydration of cross-pollen. All these results taken together strongly suggest that SP11 is the pollen S determinant in SI.
Resumo:
Pollen tubes navigate the route from stigma to ovule with great accuracy, but the cues that guide them along this route are not known. We reproduced the environment on the stigma of Nicotiana alata by immersing pollen in stigma exudate or oil close to an interface with an aqueous medium. The growth of pollen in this culture system mimicked growth on stigmas: pollen grains hydrated and germinated, and pollen tubes grew toward the aqueous medium. The rate-limiting step in pollen germination was the movement of water through the surrounding exudate or oil. By elimination of other potential guidance cues, we conclude that the directional supply of water probably determined the axis of polarity of pollen tubes and resulted in growth toward the interface. We propose that a gradient of water in exudate is a guidance cue for pollen tubes on the stigma and that the composition of the exudate must be such that it is permeable enough for pollen hydration to occur but not so permeable that the supply of water becomes nondirectional. Pollen tube penetration of the stigma may be the most frequently occurring hydrotropic response of higher plants.
Resumo:
The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals.