4 resultados para Semi-infinite linear programming
em National Center for Biotechnology Information - NCBI
Resumo:
An asymptotic solution is obtained corresponding to a very intense pulse: a sudden strong increase and fast subsequent decrease of the water level at the boundary of semi-infinite fissurized-porous stratum. This flow is of practical interest: it gives a model of a groundwater flow after a high water period or after a failure of a dam around a collector of liquid waste. It is demonstrated that the fissures have a dramatic influence on the groundwater flow, increasing the penetration depth and speed of fluid penetration into the stratum. A characteristic property of the flow in fissurized-porous stratum is the rapid breakthrough of the fluid at the first stage deeply into the stratum via a system of cracks, feeding of porous blocks by the fluid in cracks, and at a later stage feeding of advancing fluid flow in fissures by the fluid, accumulated in porous blocks.
Resumo:
We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.
Resumo:
Detection of loss of heterozygosity (LOH) by comparison of normal and tumor genotypes using PCR-based microsatellite loci provides considerable advantages over traditional Southern blotting-based approaches. However, current methodologies are limited by several factors, including the numbers of loci that can be evaluated for LOH in a single experiment, the discrimination of true alleles versus "stutter bands," and the use of radionucleotides in detecting PCR products. Here we describe methods for high throughput simultaneous assessment of LOH at multiple loci in human tumors; these methods rely on the detection of amplified microsatellite loci by fluorescence-based DNA sequencing technology. Data generated by this approach are processed by several computer software programs that enable the automated linear quantitation and calculation of allelic ratios, allowing rapid ascertainment of LOH. As a test of this approach, genotypes at a series of loci on chromosome 4 were determined for 58 carcinomas of the uterine cervix. The results underscore the efficacy, sensitivity, and remarkable reproducibility of this approach to LOH detection and provide subchromosomal localization of two regions of chromosome 4 commonly altered in cervical tumors.
Resumo:
We present a general approach to forming structure-activity relationships (SARs). This approach is based on representing chemical structure by atoms and their bond connectivities in combination with the inductive logic programming (ILP) algorithm PROGOL. Existing SAR methods describe chemical structure by using attributes which are general properties of an object. It is not possible to map chemical structure directly to attribute-based descriptions, as such descriptions have no internal organization. A more natural and general way to describe chemical structure is to use a relational description, where the internal construction of the description maps that of the object described. Our atom and bond connectivities representation is a relational description. ILP algorithms can form SARs with relational descriptions. We have tested the relational approach by investigating the SARs of 230 aromatic and heteroaromatic nitro compounds. These compounds had been split previously into two subsets, 188 compounds that were amenable to regression and 42 that were not. For the 188 compounds, a SAR was found that was as accurate as the best statistical or neural network-generated SARs. The PROGOL SAR has the advantages that it did not need the use of any indicator variables handcrafted by an expert, and the generated rules were easily comprehensible. For the 42 compounds, PROGOL formed a SAR that was significantly (P < 0.025) more accurate than linear regression, quadratic regression, and back-propagation. This SAR is based on an automatically generated structural alert for mutagenicity.