14 resultados para Selim III, Sultan of the Turks, 1761-1808.

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The II-III loop of the skeletal muscle dihydropyridine receptor (DHPR) α1S subunit is responsible for bidirectional-signaling interactions with the ryanodine receptor (RyR1): transmitting an orthograde, excitation–contraction (EC) coupling signal to RyR1 and receiving a retrograde, current-enhancing signal from RyR1. Previously, several reports argued for the importance of two distinct regions of the skeletal II-III loop (residues R681–L690 and residues L720–Q765, respectively), claiming for each a key function in DHPR–RyR1 communication. To address whether residues 720–765 of the II-III loop are sufficient to enable skeletal-type (Ca2+ entry-independent) EC coupling and retrograde interaction with RyR1, we constructed a green fluorescent protein (GFP)-tagged chimera (GFP-SkLM) having rabbit skeletal (Sk) DHPR sequence except for a II-III loop (L) from the DHPR of the house fly, Musca domestica (M). The Musca II-III loop (75% dissimilarity to α1S) has no similarity to α1S in the regions R681–L690 and L720–Q765. GFP-SkLM expressed in dysgenic myotubes (which lack endogenous α1S subunits) was unable to restore EC coupling and displayed strongly reduced Ca2+ current densities despite normal surface expression levels and correct triad targeting (colocalization with RyR1). Introducing rabbit α1S residues L720–L764 into the Musca II-III loop of GFP-SkLM (substitution for Musca DHPR residues E724–T755) completely restored bidirectional coupling, indicating its dependence on α1S loop residues 720–764 but its independence from other regions of the loop. Thus, 45 α1S-residues embedded in a very dissimilar background are sufficient to restore bidirectional coupling, indicating that these residues may be a site of a protein–protein interaction required for bidirectional coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial pathogens of both animals and plants use type III secretion machines to inject virulence proteins into host cells. Although many components of the secretion machinery are conserved among different bacterial species, the substrates for their type III pathways are not. The Yersinia type III machinery recognizes some secretion substrates via a signal that is encoded within the first 15 codons of yop mRNA. These signals can be altered by frameshift mutations without affecting secretion of the encoded polypeptides, suggesting a mechanism whereby translation of yop mRNA is coupled to the translocation of newly synthesized polypeptide. We report that the type III machinery of Erwinia chrysanthemi cloned in Escherichia coli recognizes the secretion signals of yopE and yopQ. Pseudomonas syringae AvrB and AvrPto, two proteins exported by the recombinant Erwinia machine, can also be secreted by the Yersinia type III pathway. Mapping AvrPto sequences sufficient for the secretion of reporter fusions in Yersinia revealed the presence of an mRNA secretion signal. We propose that 11 conserved components of type III secretion machines may recognize signals that couple mRNA translation to polypeptide secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli cause a characteristic histopathology in intestinal cells known as attaching and effacing. The attaching and effacing lesion is encoded by the Locus of Enterocyte Effacement (LEE) pathogenicity island, which encodes a type III secretion system, the intimin intestinal colonization factor, and the translocated intimin receptor protein that is translocated from the bacterium to the host epithelial cells. Using lacZ reporter gene fusions, we show that expression of the LEE operons encoding the type III secretion system, translocated intimin receptor, and intimin is regulated by quorum sensing in both enterohemorrhagic E. coli and enteropathogenic E. coli. The luxS gene recently shown to be responsible for production of autoinducer in the Vibrio harveyi and E. coli quorum-sensing systems is responsible for regulation of the LEE operons, as shown by the mutation and complementation of the luxS gene. Regulation of intestinal colonization factors by quorum sensing could play an important role in the pathogenesis of disease caused by these organisms. These results suggest that intestinal colonization by E. coli O157:H7, which has an unusually low infectious dose, could be induced by quorum sensing of signals produced by nonpathogenic E. coli of the normal intestinal flora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparin has been used as a clinical anticoagulant for more than 50 years, making it one of the most effective pharmacological agents known. Much of heparin's activity can be traced to its ability to bind antithrombin III (AT-III). Low molecular weight heparin (LMWH), derived from heparin by its controlled breakdown, maintains much of the antithrombotic activity of heparin without many of the serious side effects. The clinical significance of LMWH has highlighted the need to understand and develop chemical or enzymatic means to generate it. The primary enzymatic tools used for the production of LMWH are the heparinases from Flavobacterium heparinum, specifically heparinases I and II. Using pentasaccharide and hexasaccharide model compounds, we show that heparinases I and II, but not heparinase III, cleave the AT-III binding site, leaving only a partially intact site. Furthermore, we show herein that glucosamine 3-O sulfation at the reducing end of a glycosidic linkage imparts resistance to heparinase I, II, and III cleavage. Finally, we examine the biological and pharmacological consequences of a heparin oligosaccharide that contains only a partial AT-III binding site. We show that such an oligosaccharide lacks some of the functional attributes of heparin- and heparan sulfate-like glycosaminoglycans containing an intact AT-III site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance. Agrobacterium-mediated transient expression of the Xcv avrBs2 gene in plant cells results in Bs2-dependent cell death, indicating that the AvrBs2 protein alone is sufficient for the activation of disease resistance-mediated cell death in planta. We now provide evidence that AvrBs2 is secreted from Xcv and that secretion is type III (hrp) dependent. N- and C-terminal deletion analysis of AvrBs2 has identified the effector domain of AvrBs2 recognized by Bs2 pepper plants. By using a truncated Pseudomonas syringae AvrRpt2 effector reporter devoid of type III signal sequences, we have localized the minimal region of AvrBs2 required for type III secretion in Xcv. Furthermore, we have identified the region of AvrBs2 required for both type III secretion and translocation to host plants. The mapping of AvrBs2 sequences sufficient for type III delivery also revealed the presence of a potential mRNA secretion signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many bacterial pathogens of plants and animals have evolved a specialized protein-secretion system termed type III to deliver bacterial proteins into host cells. These proteins stimulate or interfere with host cellular functions for the pathogen's benefit. The Salmonella typhimurium pathogenicity island 1 encodes one of these systems that mediates this bacterium's ability to enter nonphagocytic cells. Several components of this type III secretion system are organized in a supramolecular structure termed the needle complex. This structure is made of discrete substructures including a base that spans both membranes and a needle-like projection that extends outward from the bacterial surface. We demonstrate here that the type III secretion export apparatus is required for the assembly of the needle substructure but is dispensable for the assembly of the base. We show that the length of the needle segment is determined by the type III secretion associated protein InvJ. We report that InvG, PrgH, and PrgK constitute the base and that PrgI is the main component of the needle of the type III secretion complex. PrgI homologs are present in type III secretion systems from bacteria pathogenic for animals but are absent from bacteria pathogenic for plants. We hypothesize that the needle component may establish the specificity of type III secretion systems in delivering proteins into either plant or animal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We attempted to devise a transcription system in which a particular DNA sequence of interest could be inducibly expressed under the control of a modified polymerase III (pol III) promoter. Its activation requires a mutated transcription factor not contained endogenously in human cells. We constructed such a promoter by fusing elements of the β-lactamase gene of Escherichia coli, containing a modified TATA-box and a pol III terminator, to the initiation region of the human U6 gene. This construct functionally resembles a 5′-regulated pol III gene and its transcribed segment can be exchanged for an arbitrary sequence. Its transcription in vitro by pol III requires the same factors as the U6 gene with the major exception that the modified TATA-box of this construct only interacts with a TATA-binding protein (TBP) mutant (TBP-DR2) but not with TBP wild-type (TBPwt). Its transcription therefore requires TBP-DR2 exclusively instead of TBPwt. In order to render the system inducible, we fused the gene coding for TBP-DR2 to a tetracycline control element and stably transfected this new construct into HeLa cells. Induction of such a stable and viable clone with tetracycline resulted in the expression of functional TBP-DR2. This system may conceptually be used in the future to inducibly express an arbitrary DNA sequence in  vivo under the control of the above mentioned promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural changes accompanying stretch-induced early unfolding events were investigated for the four type III fibronectin (FN-III) modules, FN-III7, FN-III8, FN-III9, and FN-III10 by using steered molecular dynamics. Simulations revealed that two main energy barriers, I and II, have to be overcome to initiate unraveling of FN-III's tertiary structure. In crossing the first barrier, the two opposing β-sheets of FN-III are rotated against each other such that the β-strands of both β-sheets align parallel to the force vector (aligned state). All further events in the unfolding pathway proceed from this intermediate state. A second energy barrier has to be overcome to break the first major cluster of hydrogen bonds between adjacent β-strands. Simulations revealed that the height of barrier I varied significantly among the four modules studied, being largest for FN-III7 and lowest for FN-III10, whereas the height of barrier II showed little variation. Key residues affecting the mechanical stability of FN-III modules were identified. These results suggest that FN-III modules can be prestretched into an intermediate state with only minor changes to their tertiary structures. FN-III10, for example, extends 12 Å from the native “twisted” to the intermediate aligned state, and an additional 10 Å from the aligned state to further unfolding where the first β-strand is peeled away. The implications of the existence of intermediate states regarding the elasticity of fibrillar fibers and the stretch-induced exposure of cryptic sites are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corticotropin-releasing factor (CRF) family of neuropeptides includes the mammalian peptides CRF, urocortin, and urocortin II, as well as piscine urotensin I and frog sauvagine. The mammalian peptides signal through two G protein-coupled receptor types to modulate endocrine, autonomic, and behavioral responses to stress, as well as a range of peripheral (cardiovascular, gastrointestinal, and immune) activities. The three previously known ligands are differentially distributed anatomically and have distinct specificities for the two major receptor types. Here we describe the characterization of an additional CRF-related peptide, urocortin III, in the human and mouse. In searching the public human genome databases we found a partial expressed sequence tagged (EST) clone with significant sequence identity to mammalian and fish urocortin-related peptides. By using primers based on the human EST sequence, a full-length human clone was isolated from genomic DNA that encodes a protein that includes a predicted putative 38-aa peptide structurally related to other known family members. With a human probe, we then cloned the mouse ortholog from a genomic library. Human and mouse urocortin III share 90% identity in the 38-aa putative mature peptide. In the peptide coding region, both human and mouse urocortin III are 76% identical to pufferfish urocortin-related peptide and more distantly related to urocortin II, CRF, and urocortin from other mammalian species. Mouse urocortin III mRNA expression is found in areas of the brain including the hypothalamus, amygdala, and brainstem, but is not evident in the cerebellum, pituitary, or cerebral cortex; it is also expressed peripherally in small intestine and skin. Urocortin III is selective for type 2 CRF receptors and thus represents another potential endogenous ligand for these receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plant class III alcohol dehydrogenase (or glutathione-dependent formaldehyde dehydrogenase) has been characterized. The enzyme is a typical class III member with enzymatic parameters and substrate specificity closely related to those of already established animal forms. Km values with the pea enzyme are 6.5 microM for NAD+, 2 microM for S-hydroxymethylglutathione, and 840 microM for octanol versus 9, 4, and 1200 microM, respectively, with the human enzyme. Structurally, the pea/human class III enzymes are closely related, exhibiting a residue identity of 69% and with only 3 of 23 residues differing among those often considered in substrate and coenzyme binding. In contrast, the corresponding ethanol-active enzymes, the long-known human liver and pea alcohol dehydrogenases, differ more (47% residue identities) and are also in functionally important active site segments, with 12 of the 23 positions exchanged, including no less than 7 at the usually much conserved coenzyme-binding segment. These differences affect functionally important residues that are often class-distinguishing, such as those at positions 48, 51, and 115, where the plant ethanol-active forms resemble class III (Thr, Tyr, and Arg, respectively) rather than the animal ethanol-active class I forms (typically Ser, His, and Asp, respectively). Calculations of phylogenetic trees support the conclusions from functional residues in subgrouping plant ethanol-active dehydrogenases and the animal ethanol-active enzymes (class I) as separate descendants from the class III line. It appears that the classical plant alcohol dehydrogenases (now called class P) have a duplicatory origin separate from that of the animal class I enzymes and therefore a paralogous relationship with functional convergence of their alcohol substrate specificity. Combined, the results establish the conserved nature of class III also in plants, and contribute to the molecular and functional understanding of alcohol dehydrogenases by defining two branches of plant enzymes into the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RNA polymerase II and III small nuclear RNA (snRNA) promoters contain a common basal promoter element, the proximal sequence element (PSE). The PSE binds a multisubunit complex we refer to as the snRNA activating protein complex (SNAPc). At least four polypeptides are visible in purified SNAPc preparations, which migrate with apparent molecular masses of 43, 45, 50, and 190 kDa on SDS/polyacrylamide gels. In addition, purified preparations of SNAPc contain variable amounts of TATA box binding protein (TBP). An important question is whether the PSEs of RNA polymerase II and III snRNA promoters recruit the exact same SNAP complex or slightly different versions of SNAPc, differing, for example, by the presence or absence of a subunit. To address this question, we are isolating cDNAs encoding different subunits of SNAPc. We have previously isolated the cDNA encoding the 43-kDa subunit SNAP43. We now report the isolation of the cDNA that encodes the p45 polypeptide. Antibodies directed against p45 retard the mobility of the SNAPc-PSE complex in an electrophoretic mobility shift assay, indicating that p45 is indeed part of SNAPc. We therefore refer to this protein as SNAP45. SNAP45 is exceptionally proline-rich, interacts strongly with TBP, and, like SNAP43, is required for both RNA polymerase II and III transcription of snRNA genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TFC5, the unique and essential gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor (TF)IIIB has been cloned. It encodes a 594-amino acid protein (67,688 Da). Escherichia coli-produced B" has been used to reconstitute entirely recombinant TFIIIB that is fully functional for TFIIIC-directed, as well as TATA box-dependent, DNA binding and transcription. The DNase I footprints of entirely recombinant TFIIIB, composed of B", the 67-kDa Brf, and TATA box-binding protein, and TFIIIB reconstituted with natural B" are indistinguishable. A truncated form of B" lacking 39 N-terminal and 107 C-terminal amino acids is also functional for transcription.