57 resultados para Self-determination, National.

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromophore-assisted light inactivation (CALI) offers the only method capable of modulating specific protein activities in localized regions and at particular times. Here, we generalize CALI so that it can be applied to a wider range of tasks. Specifically, we show that CALI can work with a genetically inserted epitope tag; we investigate the effectiveness of alternative dyes, especially fluorescein, comparing them with the standard CALI dye, malachite green; and we study the relative efficiencies of pulsed and continuous-wave illumination. We then use fluorescein-labeled hemagglutinin antibody fragments, together with relatively low-power continuous-wave illumination to examine the effectiveness of CALI targeted to kinesin. We show that CALI can destroy kinesin activity in at least two ways: it can either result in the apparent loss of motor activity, or it can cause irreversible attachment of the kinesin enzyme to its microtubule substrate. Finally, we apply this implementation of CALI to an in vitro system of motor proteins and microtubules that is capable of self-organized aster formation. In this system, CALI can effectively perturb local structure formation by blocking or reducing the degree of aster formation in chosen regions of the sample, without influencing structure formation elsewhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers of N-substituted glycines (“peptoids”) containing chiral centers at the α position of their side chains can form stable structures in solution. We studied a prototypical peptoid, consisting of five para-substituted (S)-N-(1-phenylethyl)glycine residues, by NMR spectroscopy. Multiple configurational isomers were observed, but because of extensive signal overlap, only the major isomer containing all cis-amide bonds was examined in detail. The NMR data for this molecule, in conjunction with previous CD spectroscopic results, indicate that the major species in methanol is a right-handed helix with cis-amide bonds. The periodicity of the helix is three residues per turn, with a pitch of ≈6 Å. This conformation is similar to that anticipated by computational studies of a chiral peptoid octamer. The helical repeat orients the amide bond chromophores in a manner consistent with the intensity of the CD signal exhibited by this molecule. Many other chiral polypeptoids have similar CD spectra, suggesting that a whole family of peptoids containing chiral side chains is capable of adopting this secondary structure motif. Taken together, our experimental and theoretical studies of the structural properties of chiral peptoids lay the groundwork for the rational design of more complex polypeptoid molecules, with a variety of applications, ranging from nanostructures to nonviral gene delivery systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a helical unwinding assay for reversibly binding DNA ligands that uses closed circular DNA, topoisomerase I (Topo I), and two-dimensional agarose gel electrophoresis. Serially diluted Topo I relaxation reactions at constant DNA/ligand ratio are performed, and the resulting apparent unwinding of the closed circular DNA is used to calculate both ligand unwinding angle (φ) and intrinsic association constant (Ka). Mathematical treatment of apparent unwinding is formally analogous to that of apparent extinction coefficient data for optical binding titrations. Extrapolation to infinite DNA concentration yields the true unwinding angle of a given ligand and its association constant under Topo I relaxation conditions. Thus this assay delivers simultaneous structural and thermodynamic information describing the ligand–DNA complex. The utility of this assay has been demonstrated by using calichearubicin B (CRB), a synthetic hybrid molecule containing the anthraquinone chromophore of (DA) and the carbohydrate domain of calicheamicin γ1I. The unwinding angle for CRB calculated by this method is −5.3 ± 0.5°. Its Ka value is 0.20 × 106 M−1. For comparison, the unwinding angles of ethidium bromide and DA have been independently calculated, and the results are in agreement with canonical values for these compounds. Although a stronger binder to selected sites, CRB is a less potent unwinder than its parent compound DA. The assay requires only small amounts of ligand and offers an attractive option for analysis of DNA binding by synthetic and natural compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cell-mediated assembly of fibronectin (Fn) into fibrillar matrices is a complex multistep process that is incompletely understood because of the chemical complexity of the extracellular matrix and a lack of experimental control over molecular interactions and dynamic events. We have identified conditions under which Fn assembles into extended fibrillar networks after adsorption to a dipalmitoyl phosphatidylcholine (DPPC) monolayer in contact with physiological buffer. We propose a sequential model for the Fn assembly pathway, which involves the orientation of Fn underneath the lipid monolayer by insertion into the liquid expanded (LE) phase of DPPC. Attractive interactions between these surface-anchored proteins and the liquid condensed (LC) domains leads to Fn enrichment at domain edges. Spontaneous self-assembly into fibrillar networks, however, occurs only after expansion of the DPPC monolayer from the LC phase though the LC/LE phase coexistence. Upon monolayer expansion, the domain boundaries move apart while attractive interactions among Fn molecules and between Fn and domain edges produce a tensile force on the proteins that initiates fibril assembly. The resulting fibrils have been characterized in situ by using fluorescence and light-scattering microscopy. We have found striking similarities between fibrils produced under DPPC monolayers and those found on cellular surfaces, including their assembly pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the defensive behavior of honeybees under controlled experimental conditions. During an attack on two identical targets, the spatial distribution of stings varied as a function of the total number of stings, evincing the classic “pitchfork bifurcation” phenomenon of nonlinear dynamics. The experimental results support a model of defensive behavior based on a self-organizing mechanism. The model helps to explain several of the characteristic features of the honeybee defensive response: (i) the ability of the colony to localize and focus its attack, (ii) the strong variability between different hives in the intensity of attack, as well as (iii) the variability observed within the same hive, and (iv) the ability of the colony to amplify small differences between the targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In pre-B lymphocytes, productive rearrangement of Ig light chain genes allows assembly of the B cell receptor (BCR), which selectively promotes further developmental maturation through poorly defined transmembrane signaling events. Using a novel in vitro system to study immune tolerance during development, we find that BCR reactivity to auto-antigen blocks this positive selection, preventing down-regulation of light chain gene recombination and promoting secondary light chain gene rearrangements that often alter BCR specificity, a process called receptor editing. Under these experimental conditions, self-antigen induces secondary light chain gene rearrangements in at least two-thirds of autoreactive immature B cells, but fails to accelerate cell death at this stage. These data suggest that in these cells the mechanism of immune tolerance is receptor selection rather than clonal selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNAs that undergo a rapid site-specific cleavage at low pH have been selected by in vitro selection (the SELEX process). The cleavage does not require the addition of any divalent metal ions, and is in fact inhibited by divalent metal ions, spermine, or high concentrations of monovalent metal ions. This low pH catalyzed cleavage results in a 2′,3′-cyclic phosphate at the 3′ end and a free hydroxyl at the 5′ end. The reaction proceeds with a calculated rate of 1.1 min−1 at room temperature in cacodylate buffer at pH 5.0. The rate of cleavage is dependent on the pH and shows an optimum around pH 4.0. The rate constant is independent of RNA concentration, indicating to an intramolecular reaction. Autocatalytic cleavage at low pH, in the absence of a metal ion requirement, adds to the reaction possibilities that may have existed on the prebiotic earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The causal agent of chrysanthemum chlorotic mottle (CChM) disease has been identified, cloned, and sequenced. It is a viroid RNA (CChMVd) of 398–399 nucleotides. In vitro transcripts with the complete CChMVd sequence were infectious and induced the typical symptoms of the CChM disease. CChMVd can form hammerhead structures in both polarity strands. Plus and minus monomeric CChMVd RNAs self-cleaved during in vitro transcription and after purification as predicted by these structures, which are stable and most probably act as single hammerhead structures as in peach latent mosaic viroid (PLMVd), but not in avocado sunblotch viroid (ASBVd). Moreover, the plus CChMVd hammerhead structure also appears to be active in vivo, because the 5′ terminus of the linear plus CChMVd RNA isolated from infected tissue is that predicted by the corresponding hammerhead ribozyme. Both hammerhead structures of CChMVd display some peculiarities: the plus self-cleaving domain has an unpaired A after the conserved A9 residue, and the minus one has an unusually long helix II. The most stable secondary structure predicted for CChMVd is a branched conformation that does not fulfill the rod-like or quasi-rod-like model proposed for the in vitro structure of most viroids with the exception of PLMVd, whose proposed secondary structure of lowest free energy also is branched. The unusual conformation of CChMVd and PLMVd is supported by their insolubility in 2 M LiCl, in contrast to ASBVd and a series of representative non-self-cleaving viroids that are soluble under the same high salt conditions. These results support the classification of self-cleaving viroids into two subgroups, one formed by ASBVd and the other one by PLMVd and CChMVd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “peroxy” intermediate (P form) of bovine cytochrome c oxidase was prepared by reaction of the two-electron reduced mixed-valence CO complex with 18O2 after photolytic removal of CO. The water present in the reaction mixture was recovered and analyzed for 18O enrichment by mass spectrometry. It was found that approximately one oxygen atom (18O) per one equivalent of the P form was present in the bulk water. The data show that the oxygen–oxygen dioxygen bond is already broken in the P intermediate and that one oxygen atom can be readily released or exchanged with the oxygen of the solvent water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent data suggest that survival of resting, naïve T cells requires an interaction with self MHC molecules. From analysis of the class I MHC-restricted T cell receptor transgenic strain OT-I, we report a different response. Rather than merely surviving, these T cells proliferated slowly after transfer into T-depleted syngeneic hosts. This expansion required both T cell “space” and expression of normal levels of self class I MHC molecules. Furthermore, we demonstrate that during homeostatic expansion in a suitable environment, naïve phenotype (CD44low) OT-I T cells converted to memory phenotype (CD44med/high), despite the absence of foreign antigenic stimulation. On the other hand, cells undergoing homeostatic expansion did not acquire cytolytic effector function. The significance of these data for reactivity of T cells with self peptide/MHC ligands and the implications for normal and abnormal T cell homeostasis are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective hematopoiesis requires the commitment of pluripotent and multipotent stem cells to distinct differentiation pathways, proliferation and maturation of cells in the various lineages, and preservation of pluripotent progenitors to provide continuous renewal of mature blood cells. While the importance of positive and negative cytokines in regulating proliferation and maturation of hematopoietic cells has been well documented, the factors and molecular processes involved in lineage commitment and self-renewal of multipotent progenitors have not yet been defined. In other developmental systems, cellular interactions mediated by members of the Notch gene family have been shown to influence cell fate determination by multipotent progenitors. We previously described the expression of the human Notch1 homolog, TAN-1, in immature hematopoietic precursors. We now demonstrate that constitutive expression of the activated intracellular domain of mouse Notch1 in 32D myeloid progenitors inhibits granulocytic differentiation and permits expansion of undifferentiated cells, findings consistent with the known function of Notch in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The L type calcium channel agonist (±)Bay K 8644 has been reported to cause characteristic motor abnormalities in adult mice. The current study shows that administration of this drug can also cause the unusual phenomenon of self-injurious biting, particularly when given to young mice. Self-biting is provoked by injecting small quantities of (±)Bay K 8644 directly into the lateral ventricle of the brain, suggesting a central effect of the drug. Similar behaviors can be provoked by administration of another L type calcium channel agonist, FPL 64176. The self-biting provoked by (±)Bay K 8644 can be inhibited by pretreating the mice with dihydropyridine L type calcium channel antagonists such as nifedipine, nimodipine, or nitrendipine. However, self-biting is not inhibited by nondihydropyridine antagonists including diltiazem, flunarizine, or verapamil. The known actions of (±)Bay K 8644 as an L type calcium channel agonist, the reproduction of similar behavior with another L type calcium channel agonist, and the protection afforded by certain L type calcium channel antagonists implicate calcium channels in the mediation of the self-biting behavior. This phenomenon provides a model for studying the neurobiology of this unusual behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene therapy is based on the vectorization of genes to target cells and their subsequent expression. Cationic amphiphile-mediated delivery of plasmid DNA is the nonviral gene transfer method most often used. We examined the supramolecular structure of lipopolyamine/plasmid DNA complexes under various condensing conditions. Plasmid DNA complexation with lipopolyamine micelles whose mean diameter was 5 nm revealed three domains, depending on the lipopolyamine/plasmid DNA ratio. These domains respectively corresponded to negatively, neutrally, and positively charged complexes. Transmission electron microscopy and x-ray scattering experiments on complexes originating from these three domains showed that although their morphology depends on the lipopolyamine/plasmid DNA ratio, their particle structure consists of ordered domains characterized by even spacing of 80 Å, irrespective of the lipid/DNA ratio. The most active lipopolyamine/DNA complexes for gene transfer were positively charged. They were characterized by fully condensed DNA inside spherical particles (diameter: 50 nm) sandwiched between lipid bilayers. These results show that supercoiled plasmid DNA is able to transform lipopolyamine micelles into a supramolecular organization characterized by ordered lamellar domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skipping of internal exons during removal of introns from pre-mRNA must be avoided for proper expression of most eukaryotic genes. Despite significant understanding of the mechanics of intron removal, mechanisms that ensure inclusion of internal exons in multi-intron pre-mRNAs remain mysterious. Using a natural two-intron yeast gene, we have identified distinct RNA–RNA complementarities within each intron that prevent exon skipping and ensure inclusion of internal exons. We show that these complementarities are positioned to act as intron identity elements, bringing together only the appropriate 5′ splice sites and branchpoints. Destroying either intron self-complementarity allows exon skipping to occur, and restoring the complementarity using compensatory mutations rescues exon inclusion, indicating that the elements act through formation of RNA secondary structure. Introducing new pairing potential between regions near the 5′ splice site of intron 1 and the branchpoint of intron 2 dramatically enhances exon skipping. Similar elements identified in single intron yeast genes contribute to splicing efficiency. Our results illustrate how intron secondary structure serves to coordinate splice site pairing and enforce exon inclusion. We suggest that similar elements in vertebrate genes could assist in the splicing of very large introns and in the evolution of alternative splicing.