2 resultados para Self-Avoiding Walks
em National Center for Biotechnology Information - NCBI
Resumo:
Polyethylene chains in the amorphous region between two crystalline lamellae M unit apart are modeled as random walks with one-step memory on a cubic lattice between two absorbing boundaries. These walks avoid the two preceding steps, though they are not true self-avoiding walks. Systems of difference equations are introduced to calculate the statistics of the restricted random walks. They yield that the fraction of loops is (2M - 2)/(2M + 1), the fraction of ties 3/(2M + 1), the average length of loops 2M - 0.5, the average length of ties 2/3M2 + 2/3M - 4/3, the average length of walks equals 3M - 3, the variance of the loop length 16/15M3 + O(M2), the variance of the tie length 28/45M4 + O(M3), and the variance of the walk length 2M3 + O(M2).
Resumo:
Landforms and earthquakes appear to be extremely complex; yet, there is order in the complexity. Both satisfy fractal statistics in a variety of ways. A basic question is whether the fractal behavior is due to scale invariance or is the signature of a broadly applicable class of physical processes. Both landscape evolution and regional seismicity appear to be examples of self-organized critical phenomena. A variety of statistical models have been proposed to model landforms, including diffusion-limited aggregation, self-avoiding percolation, and cellular automata. Many authors have studied the behavior of multiple slider-block models, both in terms of the rupture of a fault to generate an earthquake and in terms of the interactions between faults associated with regional seismicity. The slider-block models exhibit a remarkably rich spectrum of behavior; two slider blocks can exhibit low-order chaotic behavior. Large numbers of slider blocks clearly exhibit self-organized critical behavior.