4 resultados para Selection mechanism

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional wisdom holds that phase variation is a mechanism for immune evasion. However, despite fimbrial phase variation, mice previously exposed to Salmonella typhimurium are protected against a subsequent challenge. We evaluated whether lpf phase variation instead may be a mechanism to evade cross-immunity between Salmonella serotypes. Mice were immunized orally with S. typhimurium aroA mutants either that expressed the lpf operon (phase-on variant) or in which the entire lpf operon had been removed by deletion. During a subsequent challenge with virulent Salmonella enteritidis a selection against lpf phase-on variants was observed in mice previously exposed to S. typhimurium long polar fimbriae. Vaccination with S. typhimurium did not confer protection against challenge with S. enteritidis, presumably because lpf phase-off variants were able to evade cross-immunity. We propose that lpf phase variation is a mechanism to evade cross-immunity between Salmonella serotypes, thereby allowing their coexistence in a host population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starving Dictyostelium amoebae emit pulses of the chemoattractant cAMP that are relayed from cell to cell as circular and spiral waves. We have recently modeled spiral wave formation in Dictyostelium. Our model suggests that a secreted protein inhibitor of an extracellular cAMP phosphodiesterase selects for spirals. Herein we test the essential features of this prediction by comparing wave propagation in wild type and inhibitor mutants. We find that mutants rarely form spirals. The territory size of mutant strains is approximately 50 times smaller than wild type, and the mature fruiting bodies are smaller but otherwise normal. These results identify a mechanism for selecting one wave symmetry over another in an excitable system and suggest that the phosphodiesterase inhibitor may be under selection because it helps regulate territory size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earlier we have shown that oscillations with a long period ("supercycles") may arise in two-locus systems experiencing cyclical selection with a short period. However, this mode of complex limiting behavior appeared to be possible for narrow ranges of parameters. Here we demonstrate that a multilocus system subjected to stabilizing selection with cyclically moving optimum can generate ubiquitous complex limiting behavior including supercycles, T-cycles, and chaotic-like phenomena. This mode of multilocus dynamics far exceeds the potential attainable under ordinary selection models resulting in simple behavior. It may represent a novel evolutionary mechanism increasing genetic diversity over long-term time periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chorismate mutase (EC 5.4.99.5) catalyzes the intramolecular rearrangement of chorismate to prephenate. Arg-90 in the active site of the enzyme from Bacillus subtilis is in close proximity to the substrate's ether oxygen and may contribute to efficient catalysis by stabilizing the presumed dipolar transition state that would result upon scission of the C--O bond. To test this idea, we have developed a novel complementation system for chorismate mutase activity in Escherichia coli by reengineering parts of the aromatic amino acid biosynthetic pathway. The codon for Arg-90 was randomized, alone and in combination with that for Cys-88, and active clones were selected. The results show that a positively charged residue either at position 88 (Lys) or 90 (Arg or Lys) is essential. Our data provide strong support for the hypothesis that the positive charge is required for stabilization of the transition state of the enzymatic chorismate rearrangement. The new selection system, in conjunction with combinatorial mutagenesis, renders the mechanism of the natural enzyme(s) accessible to further exploration and opens avenues for the improvement of first generation catalytic antibodies with chorismate mutase activity.