9 resultados para Seeds. Seed technology

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the aim of improving the nutritive value of an important grain legume crop, a chimeric gene specifying seed-specific expression of a sulfur-rich, sunflower seed albumin was stably transformed into narrow-leafed lupin (Lupinus angustifolius L.). Sunflower seed albumin accounted for 5% of extractable seed protein in a line containing a single tandem insertion of the transferred DNA. The transgenic seeds contained less sulfate and more total amino acid sulfur than the nontransgenic parent line. This was associated with a 94% increase in methionine content and a 12% reduction in cysteine content. There was no statistically significant change in other amino acids or in total nitrogen or total sulfur contents of the seeds. In feeding trials with rats, the transgenic seeds gave statistically significant increases in live weight gain, true protein digestibility, biological value, and net protein utilization, compared with wild-type seeds. These findings demonstrate the feasibility of using genetic engineering to improve the nutritive value of grain crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to β-glucuronidase (GUS) to study their activity pattern. The FIS2∷GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2∷GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEA∷GUS has a pattern of activity similar to that of FIS2∷GUS, but FIE∷GUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2∷GUS, MEA∷GUS, and FIE∷GUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental goal of plant population ecology is to understand the consequences for plant fitness of seed dispersal by animals. Theories of seed dispersal and tropical forest regeneration suggest that the advantages of seed dispersal for most plants are escape from seed predation near the parent tree and colonization of vacant sites, the locations of which are unpredictable in space and time. Some plants may gain in fitness as a fortuitous consequence of disperser behavior if certain species of dispersers nonrandomly place seeds in sites predictably favorable for seedling establishment. Such patterns of directed dispersal by vertebrates long have been suggested but never demonstrated for tropical forest trees. Here we report the pattern of seed distribution and 1-year seedling survival generated by five species of birds for a neotropical, shade-tolerant tree. Four of the species dispersed seeds to sites near the parent trees with microhabitat characteristics similar to those at random locations, whereas the fifth species, a bellbird, predictably dispersed seeds under song perches in canopy gaps. The pattern of seedling recruitment was bimodal, with a peak near parent trees and a second peak, corresponding to bellbird song perches, far (>40 m) from parent trees. Seedling survival was higher for seeds dispersed by bellbirds than by the other species, because of a reduction in seedling mortality by fungal pathogens in gaps. Thus, bellbirds play a significant role in seed dispersal by providing directed dispersal to favorable sites and therefore may influence plant recruitment patterns and species diversity in Neotropical forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During oil deposition in developing seeds of Arabidopsis, photosynthate is imported in the form of carbohydrates into the embryo and converted to triacylglycerols. To identify genes essential for this process and to investigate the molecular basis for the developmental regulation of oil accumulation, mutants producing wrinkled, incompletely filled seeds were isolated. A novel mutant locus, wrinkled1 (wri1), which maps to the bottom of chromosome 3 and causes an 80% reduction in seed oil content, was identified. Wild-type and homozygous wri1 mutant plantlets or mature plants were indistinguishable. However, developing homozygous wri1 seeds were impaired in the incorporation of sucrose and glucose into triacylglycerols, but incorporated pyruvate and acetate at an increased rate. Because the activities of several glycolytic enzymes, in particular hexokinase and pyrophosphate-dependent phosphofructokinase, are reduced in developing homozygous wri1 seeds, it is suggested that WRI1 is involved in the developmental regulation of carbohydrate metabolism during seed filling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the seed germination in Arabidopsis thaliana of wild type (wt), and phytochrome A (PhyA)- and B (PhyB)-mutants in terms of incubation time and environmental light effects. Seed germination of the wt and PhyA-null mutant (phyA) was photoreversibly regulated by red and far-red lights of 10-1,000 micromol m-2 when incubated in darkness for 1-14 hr, but no germination occurred in PhyB-null mutant (phyB). When wt seeds and the phyB mutant seeds were incubated in darkness for 48 hr, they synthesized PhyA during dark incubation and germinated upon exposure to red light of 1-100 nmol m-2 and far-red light of 0.5-10 micromol m-2, whereas the phyA mutant showed no such response. The results indicate that the seed germination is regulated by PhyA and PhyB but not by other phytochromes, and the effects of PhyA and PhyB are separable in this assay. We determined action spectra separately for PhyA- and PhyB-specific induction of seed germination at Okazaki large spectrograph. Action spectra for the PhyA response show that monochromatic 300-780 nm lights of very low fluence induced the germination, and this induction was not photoreversible in the range examined. Action spectra for the PhyB response show that germination was photoreversibly regulated by alternate irradiations with light of 0.01-1 mmol m-2 at wavelengths of 540-690 nm and 695-780 nm. The present work clearly demonstrated that PhyA photoirreversibly triggers the germination upon irradiations with ultraviolet, visible and far-red light of very low fluence, while PhyB controls the photoreversible effects of low fluence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most plants amino acids represent the major transport form for organic nitrogen. A sensitive selection system in yeast mutants has allowed identification of a previously unidentified amino acid transporter in Arabidopsis. AAT1 encodes a hydrophobic membrane protein with 14 membrane-spanning regions and shares homologies with the ecotropic murine leukemia virus receptor, a bifunctional protein serving also as a cationic amino acid transporter in mammals. When expressed in yeast, AAT1 mediates high-affinity transport of basic amino acids, but to a lower extent also recognizes acidic and neutral amino acids. AAT1-mediated histidine transport is sensitive to protonophores and occurs against a concentration gradient, indicating that AAT1 may function as a proton symporter. AAT1 is specifically expressed in major veins of leaves and roots and in various floral tissues--i.e., and developing seeds.