3 resultados para Screens (Church decoration)

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much has been learned about vertebrate development by random mutagenesis followed by phenotypic screening and by targeted gene disruption followed by phenotypic analysis in model organisms. Because the timing of many developmental events is critical, it would be useful to have temporal control over modulation of gene function, a luxury frequently not possible with genetic mutants. Here, we demonstrate that small molecules capable of conditional gene product modulation can be identified through developmental screens in zebrafish. We have identified several small molecules that specifically modulate various aspects of vertebrate ontogeny, including development of the central nervous system, the cardiovascular system, the neural crest, and the ear. Several of the small molecules identified allowed us to dissect the logic of melanocyte and otolith development and to identify critical periods for these events. Small molecules identified in this way offer potential to dissect further these and other developmental processes and to identify novel genes involved in vertebrate development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caenorhabditis elegans is an ideal organism for the study of the molecular basis of fundamental biological processes such as germ-line development, especially because of availability of the whole genome sequence and applicability of the RNA interference (RNAi) technique. To identify genes involved in germ-line development, we produced subtracted cDNA pools either enriched for or deprived of the cDNAs from germ-line tissues. We then performed differential hybridization on the high-density cDNA grid, on which about 7,600 nonoverlapping expressed sequence tag (EST) clones were spotted, to identify a set of genes specifically expressed in the germ line. One hundred and sixty-eight clones were then tested with the RNAi technique. Of these, 15 clones showed sterility with a variety of defects in germ-line development. Seven of them led to the production of unfertilized eggs, because of defects in spermatogenesis (4 clones), or defects in the oocytes (3 clones). The other 8 clones led to failure of oogenesis. These failures were caused by germ-line proliferation defect (Glp phenotype), meiotic arrest, and defects in sperm–oocyte switch (Mog phenotype) among others. These results demonstrate the efficacy of the screening strategy using the EST library combined with the RNAi technique in C. elegans.