2 resultados para Scopolamine
em National Center for Biotechnology Information - NCBI
Resumo:
When administered intracerebroventricularly to mice performing various learning tasks involving either short-term or long-term memory, secreted forms of the β-amyloid precursor protein (APPs751 and APPs695) have potent memory-enhancing effects and block learning deficits induced by scopolamine. The memory-enhancing effects of APPs were observed over a wide range of extremely low doses (0.05-5,000 pg intracerebroventricularly), blocked by anti-APPs antisera, and observed when APPs was administered either after the first training session in a visual discrimination or a lever-press learning task or before the acquisition trial in an object recognition task. APPs had no effect on motor performance or exploratory activity. APPs695 and APPs751 were equally effective in the object recognition task, suggesting that the memory-enhancing effect of APPs does not require the Kunitz protease inhibitor domain. These data suggest an important role for APPss on memory processes.
Resumo:
Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored.