2 resultados para Scleroderma
em National Center for Biotechnology Information - NCBI
Von Willebrand factor propeptide as a marker of disease activity in systemic sclerosis (scleroderma)
Resumo:
In 44 consecutive patients with systemic sclerosis (SSc), plasma concentrations of von Willebrand factor (vWf) were higher than those of the vWf propeptide, but the propeptide showed less variability within patient subgroups. Higher values of the propeptide were observed in patients with early pulmonary involvement. A closer correlation of the propeptide than of vWf to biochemical markers of activity was also evident. Our results suggest that the propeptide, despite a shorter circulating half-time and lower plasma concentrations than vWf, is more useful in the assessment of disease activity in SSc.
Resumo:
RPP2, an essential gene that encodes a 15.8-kDa protein subunit of nuclear RNase P, has been identified in the genome of Saccharomyces cerevisiae. Rpp2 was detected by sequence similarity with a human protein, Rpp20, which copurifies with human RNase P. Epitope-tagged Rpp2 can be found in association with both RNase P and RNase mitochondrial RNA processing in immunoprecipitates from crude extracts of cells. Depletion of Rpp2 protein in vivo causes accumulation of precursor tRNAs with unprocessed introns and 5′ and 3′ termini, and leads to defects in the processing of the 35S precursor rRNA. Rpp2-depleted cells are defective in processing of the 5.8S rRNA. Rpp2 immunoprecipitates cleave both yeast precursor tRNAs and precursor rRNAs accurately at the expected sites and contain the Rpp1 protein orthologue of the human scleroderma autoimmune antigen, Rpp30. These results demonstrate that Rpp2 is a protein subunit of nuclear RNase P that is functionally conserved in eukaryotes from yeast to humans.