2 resultados para Sclerenchyma
em National Center for Biotechnology Information - NCBI
Resumo:
Cyclin-dependent protein kinases (CDKs) play key roles in regulating the eukaryotic cell cycle. We have analyzed the expression of four rice (Oryza sativa) CDK genes, cdc2Os1, cdc2Os2, cdc2Os3, and R2, by in situ hybridization of sections of root apices. Transcripts of cdc2Os1, cdc2Os2, and R2 were detected uniformly in the dividing region of the root apex. cdc2Os1 and cdc2Os2 were also expressed in differentiated cells such as those in the sclerenchyma, pericycle, and parenchyma of the central cylinder. By contrast, signals corresponding to transcripts of cdc2Os3 were distributed only in patches in the dividing region. Counterstaining of sections with 4′,6-diamidino-2-phenylindole and double-target in situ hybridization with a probe for histone H4 transcripts revealed that cdc2Os3 transcripts were abundant from the G2 to the M phase, but were less abundant or absent during the S phase. The levels of the Cdc2Os3 protein and its associated histone H1-kinase activity were reduced by treatment of cultured cells with hydroxyurea, which blocks cycling cells at the onset of the S phase. Our results suggest that domains other than the conserved amino acid sequence (the PSTAIRE motif) have important roles in the function of non-PSTAIRE CDKs in distinct cell-cycle phases.
Resumo:
Homologous sense suppression of a gene encoding lignin pathway caffeic acid O-methyltransferase (CAOMT) in the xylem of quaking aspen (Populus tremuloides Michx.) resulted in transgenic plants exhibiting novel phenotypes with either mottled or complete red-brown coloration in their woody stems. These phenotypes appeared in all independent transgenic lines regenerated with a sense CAOMT construct but were absent from all plants produced with antisense CAOMT. The CAOMT sense transgene expression was undetectable, and the endogenous CAOMT transcript levels and enzyme activity were reduced in the xylem of some transgenic lines. In contrast, the sense transgene conferred overexpression of CAOMT and significant CAOMT activity in all of the transgenic plants' leaves and sclerenchyma, where normally the expression of the endogenous CAOMT gene is negligible. Thus, our results support the notion that the occurrence of sense cosuppression depends on the degree of sequence homology and endogene expression. Furthermore, the suppression of CAOMT in the xylem resulted in the incorporation of a higher amount of coniferyl aldehyde residues into the lignin in the wood of the sense plants. Characterization of the lignins isolated from these transgenic plants revealed that a high amount of coniferyl aldehyde is the origin of the red-brown coloration—a phenotype correlated with CAOMT-deficient maize (Zea mays L.) brown-midrib mutants.