26 resultados para Scientists Against Nuclear Arms

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pregnane X receptor (PXR) is the molecular target for catatoxic steroids such as pregnenolone 16α-carbonitrile (PCN), which induce cytochrome P450 3A (CYP3A) expression and protect the body from harmful chemicals. In this study, we demonstrate that PXR is activated by the toxic bile acid lithocholic acid (LCA) and its 3-keto metabolite. Furthermore, we show that PXR regulates the expression of genes involved in the biosynthesis, transport, and metabolism of bile acids including cholesterol 7α-hydroxylase (Cyp7a1) and the Na+-independent organic anion transporter 2 (Oatp2). Finally, we demonstrate that activation of PXR protects against severe liver damage induced by LCA. Based on these data, we propose that PXR serves as a physiological sensor of LCA, and coordinately regulates gene expression to reduce the concentrations of this toxic bile acid. These findings suggest that PXR agonists may prove useful in the treatment of human cholestatic liver disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or “apicoplast,” is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investigate possible functions of the apicoplast, we sought to identify nuclear-encoded genes whose products are targeted to the apicoplast in Plasmodium and Toxoplasma. We describe here nuclear genes encoding ribosomal proteins S9 and L28 and the fatty acid biosynthetic enzymes acyl carrier protein (ACP), β-ketoacyl-ACP synthase III (FabH), and β-hydroxyacyl-ACP dehydratase (FabZ). These genes show high similarity to plastid homologues, and immunolocalization of S9 and ACP verifies that the proteins accumulate in the plastid. All the putatively apicoplast-targeted proteins bear N-terminal presequences consistent with plastid targeting, and the ACP presequence is shown to be sufficient to target a recombinant green fluorescent protein reporter to the apicoplast in transgenic T. gondii. Localization of ACP, and very probably FabH and FabZ, in the apicoplast implicates fatty acid biosynthesis as a likely function of the apicoplast. Moreover, inhibition of P. falciparum growth by thiolactomycin, an inhibitor of FabH, indicates a vital role for apicoplast fatty acid biosynthesis. Because the fatty acid biosynthesis genes identified here are of a plastid/bacterial type, and distinct from those of the equivalent pathway in animals, fatty acid biosynthesis is potentially an excellent target for therapeutics directed against malaria, toxoplasmosis, and other apicomplexan-mediated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have characterized the BRCA1 gene product by using four polyclonal antibodies raised against peptides from four different regions of the protein. The antibodies specifically recognize an ≈220-kDa BRCA1 protein that is predominantly expressed in the nucleus of both normal and neoplastic breast cancer cells. It is a serine phosphoprotein that undergoes hyperphosphorylation during late G1 and S phases of the cell cycle and is transiently dephosphorylated early after M phase. We propose that BRCA1 is a phosphoprotein that alters in a qualitative and quantitative manner during cell cycle progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATRX is a member of the SNF2 family of helicase/ATPases that is thought to regulate gene expression via an effect on chromatin structure and/or function. Mutations in the hATRX gene cause severe syndromal mental retardation associated with α-thalassemia. Using indirect immunofluorescence and confocal microscopy we have shown that ATRX protein is associated with pericentromeric heterochromatin during interphase and mitosis. By coimmunofluorescence, ATRX localizes with a mouse homologue of the Drosophila heterochromatic protein HP1 in vivo, consistent with a previous two-hybrid screen identifying this interaction. From the analysis of a trap assay for nuclear proteins, we have shown that the localization of ATRX to heterochromatin is encoded by its N-terminal region, which contains a conserved plant homeodomain-like finger and a coiled-coil domain. In addition to its association with heterochromatin, at metaphase ATRX clearly binds to the short arms of human acrocentric chromosomes, where the arrays of ribosomal DNA are located. The unexpected association of a putative transcriptional regulator with highly repetitive DNA provides a potential explanation for the variability in phenotype of patients with identical mutations in the ATRX gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carcinoma of the cervix is one of the most common malignancies. Papanicolaou (Pap) smear tests have reduced mortality by up to 70%. Nevertheless their interpretation is notoriously difficult with high false-negative rates and frequently fatal consequences. We have addressed this problem by using affinity-purified antibodies against human proteins that regulate DNA replication, namely Cdc6 and Mcm5. These antibodies were applied to sections and smears of normal and diseased uterine cervix by using immunoperoxidase or immunofluorescence to detect abnormal precursor malignant cells. Antibodies against Cdc6 and Mcm5 stain abnormal cells in cervical smears and sections with remarkably high specificity and sensitivity. Proliferation markers Ki-67 and proliferating cell nuclear antigen are much less effective. The majority of abnormal precursor malignant cells are stained in both low-grade and high-grade squamous intraepithelial lesions. Immunostaining of cervical smears can be combined with the conventional Pap stain so that all the morphological information from the conventional method is conserved. Thus antibodies against proteins that regulate DNA replication can reduce the high false-negative rate of the Pap smear test and may facilitate mass automated screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20–30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150–300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we identified the heavy chain of ferritin as a developmentally regulated nuclear protein of embryonic chicken corneal epithelial cells. The nuclear ferritin is assembled into a supramolecular form indistinguishable from the cytoplasmic form of ferritin found in other cell types and thus most likely has iron-sequestering capabilities. Free iron, via the Fenton reaction, is known to exacerbate UV-induced and other oxidative damage to cellular components, including DNA. Since corneal epithelial cells are constantly exposed to UV light, we hypothesized that the nuclear ferritin might protect the DNA of these cells from free radical damage. To test this possibility, primary cultures of cells from corneal epithelium and stroma, and from skin epithelium and stroma, were UV irradiated, and DNA strand breaks were detected by an in situ 3′-end labeling method. Corneal epithelial cells without nuclear ferritin were also examined. We observed that the corneal epithelial cells with nuclear ferritin had significantly less DNA breakage than other cell types examined. Furthermore, increasing the iron concentration of the culture medium exacerbated the generation of UV-induced DNA strand breaks in corneal and skin fibroblasts, but not in the corneal epithelial cells. Most convincingly, corneal epithelial cells in which the expression of nuclear ferritin was inhibited became much more susceptible to UV-induced DNA damage. Therefore, it seems that corneal epithelial cells have evolved a novel, nuclear ferritin-based mechanism for protecting their DNA against UV damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decapentaplegic (Dpp) plays an essential role in Drosophila development, and analyses of the Dpp signaling pathway have contributed greatly to understanding of the actions of the TGF-β superfamily. Intracellular signaling of the TGF-β superfamily is mediated by Smad proteins, which are now grouped into three classes. Two Smads have been identified in Drosophila. Mothers against dpp (Mad) is a pathway-specific Smad, whereas Daughters against dpp (Dad) is an inhibitory Smad genetically shown to antagonize Dpp signaling. Here we report the identification of a common mediator Smad in Drosophila, which is closely related to human Smad4. Mad forms a heteromeric complex with Drosophila Smad4 (Medea) upon phosphorylation by Thick veins (Tkv), a type I receptor for Dpp. Dad stably associates with Tkv and thereby inhibits Tkv-induced Mad phosphorylation. Dad also blocks hetero-oligomerization and nuclear translocation of Mad. We also show that Mad exists as a monomer in the absence of Tkv stimulation. Tkv induces homo-oligomerization of Mad, and Dad inhibits this step. Finally, we propose a model for Dpp signaling by Drosophila Smad proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Androgen receptor (AR) belongs to the nuclear receptor superfamily and mediates the biological actions of male sex steroids. In this work, we have characterized a novel 130-kDa Ser/Thr protein kinase ANPK that interacts with the zinc finger region of AR in vivo and in vitro. The catalytic kinase domain of ANPK shares considerable sequence similarity with the minibrain gene product, a protein kinase suggested to contribute to learning defects associated with Down syndrome. However, the rest of ANPK sequence, including the AR-interacting interface, exhibits no apparent homology with other proteins. ANPK is a nuclear protein that is widely expressed in mammalian tissues. Its overexpression enhances AR-dependent transcription in various cell lines. In addition to the zinc finger region, ligand-binding domain and activation function AF1 of AR are needed, as the activity of AR mutants devoid of these domains was not influenced by ANPK. The receptor protein does not appear to be a substrate for ANPK in vitro, and overexpression of ANPK does not increase the extent of AR phosphorylation in vivo. In view of this, it is likely that ANPK-mediated activation of AR function is exerted through modification of AR-associated proteins, such as coregulatory factors, and/or through stabilization of the receptor protein against degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the factors specifically affecting tRNA nuclear export, we adapted in situ hybridization procedures to locate endogenous levels of individual tRNA families in wild-type and mutant yeast cells. Our studies of tRNAs encoded by genes lacking introns show that nucleoporin Nup116p affects both poly(A) RNA and tRNA export, whereas Nup159p affects only poly(A) RNA export. Los1p is similar to exportin-t, which facilitates vertebrate tRNA export. A los1 deletion mutation affects tRNA but not poly(A) RNA export. The data support the notion that Los1p and exportin-t are functional homologues. Because LOS1 is nonessential, tRNA export in vertebrate and yeast cells likely involves factors in addition to exportin-t. Mutation of RNA1, which encodes RanGAP, causes nuclear accumulation of tRNAs and poly(A) RNA. Many yeast mutants, including those with the rna1-1 mutation, affect both pre-tRNA splicing and RNA export. Our studies of the location of intron-containing pre-tRNAs in the rna1-1 mutant rule out the possibility that this results from tRNA export occurring before splicing. Our results also argue against inappropriate subnuclear compartmentalization causing defects in pre-tRNA splicing. Rather, the data support “feedback” of nucleus/cytosol exchange to the pre-tRNA splicing machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5,000–10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon-induced human MxA protein belongs to the dynamin superfamily of large GTPases. It exhibits antiviral activity against a variety of RNA viruses, including Thogoto virus, an influenza virus-like orthomyxovirus transmitted by ticks. Here, we report that MxA blocks the transport of Thogoto virus nucleocapsids into the nucleus, thereby preventing transcription of the viral genome. This interaction can be abolished by a mAb that neutralizes the antiviral activity of MxA. Our results reveal an antiviral mechanism whereby an interferon-induced protein traps the incoming virus and interferes with proper transport of the viral genome to its ultimate target compartment within the infected cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coiled bodies (CBs) are nuclear organelles involved in the metabolism of small nuclear RNAs (snRNAs) and histone messages. Their structural morphology and molecular composition have been conserved from plants to animals. CBs preferentially and specifically associate with genes that encode U1, U2, and U3 snRNAs as well as the cell cycle–regulated histone loci. A common link among these previously identified CB-associated genes is that they are either clustered or tandemly repeated in the human genome. In an effort to identify additional loci that associate with CBs, we have isolated and mapped the chromosomal locations of genomic clones corresponding to bona fide U4, U6, U7, U11, and U12 snRNA loci. Unlike the clustered U1 and U2 genes, each of these loci encode a single gene, with the exception of the U4 clone, which contains two genes. We next examined the association of these snRNA genes with CBs and found that they colocalized less frequently than their multicopy counterparts. To differentiate a lower level of preferential association from random colocalization, we developed a theoretical model of random colocalization, which yielded expected values for χ2 tests against the experimental data. Certain single-copy snRNA genes (U4, U11, and U12) but not controls were found to significantly (p < 0.000001) associate with CBs. Recent evidence indicates that the interactions between CBs and genes are mediated by nascent transcripts. Taken together, these new results suggest that CB association may be substantially augmented by the increased transcriptional capacity of clustered genes. Possible functional roles for the observed interactions of CBs with snRNA genes are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of autoantibodies to U1 small nuclear ribonucleoprotein (U1 snRNP) complexes is not well understood. We present evidence that healthy individuals with cytomegalovirus (CMV) infection have an increased frequency and quantity of antibodies to ribonucleoprotein, directed primarily against the U1-70k protein. A significant association between the presence of antibodies to CMV and antibodies to the total RNP targeted by the immune response to the spliceosome (to both the Sm and RNP; Sm/RNP) was found for patients with systemic lupus erythematosus (SLE) but not those with mixed connective-tissue disease. CMV thus may play a role in inducing autoimmune responses in a subset of patients with systemic lupus erythematosus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional inactivation of one X chromosome in mammalian female somatic cells leads to condensation of the inactive X chromosome into the heterochromatic sex chromatin, or Barr body. Little is known about the molecular composition and structure of the Barr body or the mechanisms leading to its formation in female nuclei. Because human sera from patients with autoimmune diseases often contain antibodies against a variety of cellular components, we reasoned that some autoimmune sera may contain antibodies against proteins associated with the Barr body. Therefore, we screened autoimmune sera by immunofluorescence of human fibroblasts and identified one serum that immunostained a distinct nuclear structure with a size and nuclear localization consistent with the Barr body. The number of these structures was consistent with the number of Barr bodies expected in diploid female fibroblasts containing two to five X chromosomes. Immunostaining with the serum followed by fluorescence in situ hybridization with a probe against XIST RNA demonstrated that the major fluorescent signal from the autoantibody colocalized with XIST RNA. Further analysis of the serum showed that it stains human metaphase chromosomes and a nuclear structure consistent with the inactive X in female mouse fibroblasts. However, it does not exhibit localization to a Barr body-like structure in female mouse embryonic stem cells or in cells from female mouse E7.5 embryos. The lack of staining of the inactive X in cells from female E7.5 embryos suggests the antigen(s) may be involved in X inactivation at a stage subsequent to initiation of X inactivation. This demonstration of an autoantibody recognizing an antigen(s) associated with the Barr body presents a strategy for identifying molecular components of the Barr body and examining the molecular basis of X inactivation.