3 resultados para Saussurea medusa Maxim

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The several hundred members of the eukaryotic protein kinase superfamily characterized to date share a similar catalytic domain structure, consisting of 12 conserved subdomains. Here we report the existence and wide occurrence in eukaryotes of a protein kinase with a completely different structure. We cloned and sequenced the human, mouse, rat, and Caenorhabditis elegans eukaryotic elongation factor-2 kinase (eEF-2 kinase) and found that with the exception of the ATP-binding site, they do not contain any sequence motifs characteristic of the eukaryotic protein kinase superfamily. Comparison of different eEF-2 kinase sequences reveals a highly conserved region of ≈200 amino acids which was found to be homologous to the catalytic domain of the recently described myosin heavy chain kinase A (MHCK A) from Dictyostelium. This suggests that eEF-2 kinase and MHCK A are members of a new class of protein kinases with a novel catalytic domain structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experiments have measured the rate of replication of DNA catalyzed by a single enzyme moving along a stretched template strand. The dependence on tension was interpreted as evidence that T7 and related DNA polymerases convert two (n = 2) or more single-stranded template bases to double helix geometry in the polymerization site during each catalytic cycle. However, we find structural data on the T7 enzyme–template complex indicate n = 1. We also present a model for the “tuning” of replication rate by mechanical tension. This model considers only local interactions in the neighborhood of the enzyme, unlike previous models that use stretching curves for the entire polymer chain. Our results, with n = 1, reconcile force-dependent replication rate studies with structural data on DNA polymerase complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptides are an important group of hormones mediating or modulating neuronal communication. Neuropeptides are especially abundant in evolutionarily "old" nervous systems, such as those of cnidarians, the lowest animal group having a nervous system. Cnidarians often have a life cycle including a polyp, a medusa, and a planula larva stage. Recently, a neuropeptide, < Glu-Gln-Pro-Gly-Leu-Trp-NH2, has been isolated from sea anemones that induces metamorphosis in a hydroid planula larva to become a hydropolyp [Leitz, T., Morand, K. & Mann, M. (1994) Dev. Biol. 163, 440-446]. Here, we have cloned the precursor protein for this metamorphosis-inducing neuropeptide from sea anemones. The precursor protein is 514-amino acid residues long and contains 10 copies of the immature, authentic neuropeptide (Gln-Gln-Pro-Gly-Leu-Trp-Gly). All neuropeptide copies are preceded by Xaa-Pro or Xaa-Ala sequences, suggesting a role for dipeptidyl aminopeptidase in neuropeptide precursor processing. In addition to these neuropeptide copies, there are 14 copies of another, closely related neuropeptide sequence (Gln-Asn-Pro-Gly-Leu-Trp-Gly). These copies are flanked by basic cleavage sites and, therefore, are likely to be released from the precursor protein. Furthermore, there are 13 other, related neuropeptide sequences having only small sequence variations (the most frequent sequence: Gln-Pro-Gly-Leu-Trp-Gly, eight copies). These variants are preceded by Lys-Arg, Xaa-Ala, or Xaa-Pro sequences, and are followed by basic cleavage sites, and therefore, are also likely to be produced from the precursor. Thus, there are at least 37 closely related neuropeptides localized on the precursor protein, making this precursor one of the most productive preprohormones known so far. This report also shows that unusual processing sites are common in cnidarian preprohormones.