3 resultados para Safety data recording and reporting
em National Center for Biotechnology Information - NCBI
Resumo:
We describe the use of singular value decomposition in transforming genome-wide expression data from genes × arrays space to reduced diagonalized “eigengenes” × “eigenarrays” space, where the eigengenes (or eigenarrays) are unique orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering out the eigengenes (and eigenarrays) that are inferred to represent noise or experimental artifacts enables meaningful comparison of the expression of different genes across different arrays in different experiments. Sorting the data according to the eigengenes and eigenarrays gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. After normalization and sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide effects of regulators, or with measured samples, in which these regulators are overactive or underactive, respectively.
Resumo:
In data assimilation, one prepares the grid data as the best possible estimate of the true initial state of a considered system by merging various measurements irregularly distributed in space and time, with a prior knowledge of the state given by a numerical model. Because it may improve forecasting or modeling and increase physical understanding of considered systems, data assimilation now plays a very important role in studies of atmospheric and oceanic problems. Here, three examples are presented to illustrate the use of new types of observations and the ability of improving forecasting or modeling.