18 resultados para Sacka, Ron

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of perforin-deficient mice has identified the cytolytic pathway and perforin as the preeminent effector molecule in T cell-mediated control of virus infections. In this paper, we show that mice lacking both granzyme A (gzmA) and granzyme B (gzmB), which are, beside perforin, key constituents of cytolytic vesicles, are as incapable as are perforin-deficient mice of controlling primary infections by the natural mouse pathogen ectromelia, a poxvirus. Death of gzmA×gzmB double knockout mice occurred in a dose-dependent manner, despite the expression of functionally active perforin and the absence of an intrinsic defect to generate splenic cytolytic T cells. These results establish that both gzmA and gzmB are indispensable effector molecules acting in concert with perforin in granule exocytosis-mediated host defense against natural viral pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although simian/human immunodeficiency virus (SHIV) strain DH12 replicates to high titers and causes immunodeficiency in pig-tailed macaques, virus loads measured in SHIVDH12-infected rhesus monkeys are consistently 100-fold lower and none of 22 inoculated animals have developed disease. We previously reported that the administration of anti-human CD8 mAb to rhesus macaques at the time of primary SHIVDH12 infection resulted in marked elevations of virus loads. One of the treated animals experienced rapid and profound depletions of circulating CD4+ T lymphocytes. Although the CD4+ T cell number partially recovered, this monkey subsequently suffered significant weight loss and was euthanized. A tissue culture virus stock derived from this animal, designated SHIVDH12R, induced marked and rapid CD4+ cell loss after i.v. inoculation of rhesus monkeys. Retrospective analyses of clinical specimens, collected during the emergence of SHIVDH12R indicated: (i) the input cloned SHIV remained the predominant virus during the first 5–7 months of infection; (ii) variants bearing only a few of the SHIVDH12R consensus changes first appeared 7 months after the administration of anti-CD8 mAb; (iii) high titers of neutralizing antibody directed against the input SHIV were detected by week 10 and persisted throughout the infection; and (iv) no neutralizing antibody against SHIVDH12R ever developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen intermediates (ROI) play a critical role in the defense of plants against invading pathogens. Produced during the “oxidative burst,” they are thought to activate programmed cell death (PCD) and induce antimicrobial defenses such as pathogenesis-related proteins. It was shown recently that during the interaction of plants with pathogens, the expression of ROI-detoxifying enzymes such as ascorbate peroxidase (APX) and catalase (CAT) is suppressed. It was suggested that this suppression, occurring upon pathogen recognition and coinciding with an enhanced rate of ROI production, plays a key role in elevating cellular ROI levels, thereby potentiating the induction of PCD and other defenses. To examine the relationship between the suppression of antioxidative mechanisms and the induction of PCD and other defenses during pathogen attack, we studied the interaction between transgenic antisense tobacco plants with reduced APX or CAT and a bacterial pathogen that triggers the hypersensitive response. Transgenic plants with reduced capability to detoxify ROI (i.e., antisense APX or CAT) were found to be hyperresponsive to pathogen attack. They activated PCD in response to low amounts of pathogens that did not trigger the activation of PCD in control plants. Our findings support the hypothesis that suppression of ROI-scavenging enzymes during the hypersensitive response plays an important role in enhancing pathogen-induced PCD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) binding proteins (IGFBPs) modulate the actions of the insulin-like growth factors in endocrine, paracrine, and autocrine settings. Additionally, some IGFBPs appear to exhibit biological effects that are IGF independent. The six high-affinity IGFBPs that have been characterized to date exhibit 40–60% amino acid sequence identity overall, with the most conserved sequences in their NH2 and COOH termini. We have recently demonstrated that the product of the mac25/IGFBP-7 gene, which shows significant conservation in the NH2 terminus, including an “IGFBP motif” (GCGCCXXC), exhibits low-affinity IGF binding. The closely related mammalian genes connective tissue growth factor (CTGF) gene, nov, and cyr61 encode secreted proteins that also contain the conserved sequences and IGFBP motifs in their NH2 termini. To ascertain if these genes, along with mac25/IGFBP-7, encode a family of low-affinity IGFBPs, we assessed the IGF binding characteristics of recombinant human CTGF (rhCTGF). The ability of baculovirus-synthesized rhCTGF to bind IGFs was demonstrated by Western ligand blotting, affinity cross-linking, and competitive affinity binding assays using 125I-labeled IGF-I or IGF-II and unlabeled IGFs. CTGF, like mac25/IGFBP-7, specifically binds IGFs, although with relatively low affinity. On the basis of these data, we propose that CTGF represents another member of the IGFBP family (IGFBP-8) and that the CTGF gene, mac25/IGFBP-7, nov, and cyr61 are members of a family of low-affinity IGFBP genes. These genes, along with those encoding the high-affinity IGFBPs 1–6, together constitute an IGFBP superfamily whose products function in IGF-dependent or IGF-independent modes to regulate normal and neoplastic cell growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Griffonia simplicifolia leaf lectin II (GSII), a plant defense protein against certain insects, consists of an N-acetylglucosamine (GlcNAc)-binding large subunit with a small subunit having sequence homology to class III chitinases. Much of the insecticidal activity of GSII is attributable to the large lectin subunit, because bacterially expressed recombinant large subunit (rGSII) inhibited growth and development of the cowpea bruchid, Callosobruchus maculatus (F). Site-specific mutations were introduced into rGSII to generate proteins with altered GlcNAc binding, and the different rGSII proteins were evaluated for insecticidal activity when added to the diet of the cowpea bruchid. At pH 5.5, close to the physiological pH of the cowpea bruchid midgut lumen, rGSII recombinant proteins were categorized as having high (rGSII, rGSII-Y134F, and rGSII-N196D mutant proteins), low (rGSII-N136D), or no (rGSII-D88N, rGSII-Y134G, rGSII-Y134D, and rGSII-N136Q) GlcNAc-binding activity. Insecticidal activity of the recombinant proteins correlated with their GlcNAc-binding activity. Furthermore, insecticidal activity correlated with the resistance to proteolytic degradation by cowpea bruchid midgut extracts and with GlcNAc-specific binding to the insect digestive tract. Together, these results establish that insecticidal activity of GSII is functionally linked to carbohydrate binding, presumably to the midgut epithelium or the peritrophic matrix, and to biochemical stability of the protein to digestive proteolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutagenesis of the host immune system has helped identify response pathways necessary to combat tuberculosis. Several such pathways may function as activators of a common protective gene: inducible nitric oxide synthase (NOS2). Here we provide direct evidence for this gene controlling primary Mycobacterium tuberculosis infection using mice homozygous for a disrupted NOS2 allele. NOS2−/− mice proved highly susceptible, resembling wild-type littermates immunosuppressed by high-dose glucocorticoids, and allowed Mycobacterium tuberculosis to replicate faster in the lungs than reported for other gene-deficient hosts. Susceptibility appeared to be independent of the only known naturally inherited antimicrobial locus, NRAMP1. Progression of chronic tuberculosis in wild-type mice was accelerated by specifically inhibiting NOS2 via administration of N6-(1-iminoethyl)-l-lysine. Together these findings identify NOS2 as a critical host gene for tuberculostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natriuretic peptides, produced in the heart, bind to the natriuretic peptide receptor A (NPRA) and cause vasodilation and natriuresis important in the regulation of blood pressure. We here report that mice lacking a functional Npr1 gene coding for NPRA have elevated blood pressures and hearts exhibiting marked hypertrophy with interstitial fibrosis resembling that seen in human hypertensive heart disease. Echocardiographic evaluation of the mice demonstrated a compensated state of systemic hypertension in which cardiac hypertrophy and dilatation are evident but with no reduction in ventricular performance. Nevertheless, sudden death, with morphologic evidence indicative in some animals of congestive heart failure and in others of aortic dissection, occurred in all 15 male mice lacking Npr1 before 6 months of age, and in one of 16 females in our study. Thus complete absence of NPRA causes hypertension in mice and leads to cardiac hypertrophy and, particularly in males, lethal vascular events similar to those seen in untreated human hypertensive patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To investigate psychiatric and neurological morbidity, diagnostic stability, and indicators of prognosis in patients previously identified as having medically unexplained motor symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-11 (IL-11) is a pleiotropic cytokine that regulates the growth and development of hematopoietic stem cells and decreases the proinflammatory mediators of cytokine and nitric oxide production. In animal models of arthritis, treatment with recombinant human IL-11 (rhIL-11) reduces both the level of synovitis and the histologic lesion scores in the joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The empirical observation that homologous proteins fold to similar structures is used to enhance the capabilities of an ab initio algorithm to predict protein conformations. A penalty function that forces homologous proteins to look alike is added to the potential and is employed in the coupled energy optimization of several homologous proteins. Significant improvement in the quality of the computed structures (as compared with the computational folding of a single protein) is demonstrated and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage stimulating protein (MSP), also known as hepatocyte growth factor-like, is a soluble cytokine that belongs to the family of the plasminogen-related growth factors (PRGFs). PRGFs are α/β heterodimers that bind to transmembrane tyrosine kinase receptors. MSP was originally isolated as a chemotactic factor for peritoneal macrophages. Through binding to its receptor, encoded by the RON gene, it stimulates dissociation of epithelia and works as an inflammatory mediator by repressing the production of nitric oxide (NO). Here, we identify a novel role for MSP in the central nervous system. As a paradigm to analyze this function we chose the hypoglossal system of adult mice. We demonstrate in vivo that either administration of exogenous MSP or transplantation of MSP-producing cells at the proximal stump of the resected nerve is sufficient to prevent motoneuron atrophy upon axotomy. We also show that the MSP gene is expressed in the tongue, the target of the hypoglossal nerve, and that MSP induces biosynthesis of Ron receptor in the motoneuron somata. Finally, we show that MSP suppresses NO production in the injured hypoglossal nuclei. Together, these data suggest that MSP is a novel neurotrophic factor for cranial motoneurons and, by regulating the production of NO, may have a role in brain plasticity and regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During ripening of grape (Vitis labruscana L. cv Concord) berries, abundance of several proteins increased, coordinately with hexoses, to the extent that these became the predominant proteins in the ovary. These proteins have been identified by N-terminal amino acid-sequence analysis and/or function to be a thaumatin-like protein (grape osmotin), a lipid-transfer protein, and a basic and an acidic chitinase. The basic chitinase and grape osmotin exhibited activities against the principal grape fungal pathogens Guignardia bidwellii and Botrytis cinerea based on in vitro growth assays. The growth-inhibiting activity of the antifungal proteins was substantial at levels comparable to those that accumulate in the ripening fruit, and these activities were enhanced by as much as 70% in the presence of 1 m glucose, a physiological hexose concentration in berries. The simultaneous accumulation of the antifungal proteins and sugars during berry ripening was correlated with the characteristic development of pathogen resistance that occurs in fruits during ripening. Taken together, accumulation of these proteins, in combination with sugars, appears to constitute a novel, developmentally regulated defense mechanism against phytopathogens in the maturing fruit.