3 resultados para Saarela, Toni
em National Center for Biotechnology Information - NCBI
Resumo:
A marked suppression of immune function has long been recognized as a major cause of the high morbidity and mortality rate associated with acute measles. As a hallmark of measles virus (MV)-induced immunosuppression, peripheral blood lymphocytes (PBLs) isolated from patients exhibit a significantly reduced capacity to proliferate in response to mitogens, allogens, or recall antigens. In an in vitro system we show that proliferation of naive PBLs [responder cells (RCs)] in response to a variety of stimuli was significantly impaired after cocultivation with MV-infected, UV-irradiated autologous PBLs [presenter cells (PCs)]. We further observed that a 50% reduction in proliferation of RCs could still be observed when the ratio of PC to RC was 1:100. The effect was completely abolished after physical separation of the two populations, which suggests that soluble factors were not involved. Proliferative inhibition of the RCs was observed after short cocultivation with MV-infected cells, which indicates that surface contact between one or more viral proteins and the RC population was required. We identified that the complex of both MV glycoproteins, F and H, is critically involved in triggering MV-induced suppression of mitogen-dependent proliferation, since the effect was not observed (i) using a recombinant MV in which F and H were replaced with vesicular stomatitis virus G or (ii) when either of these proteins was expressed alone. Coexpression of F and H, however, lead to a significant proliferative inhibition in the RC population. Our data indicate that a small number of MV-infected PBLs can induce a general nonresponsiveness in uninfected PBLs by surface contact, which may, in turn, account for the general suppression of immune responses observed in patients with acute measles.
Resumo:
The several hundred members of the eukaryotic protein kinase superfamily characterized to date share a similar catalytic domain structure, consisting of 12 conserved subdomains. Here we report the existence and wide occurrence in eukaryotes of a protein kinase with a completely different structure. We cloned and sequenced the human, mouse, rat, and Caenorhabditis elegans eukaryotic elongation factor-2 kinase (eEF-2 kinase) and found that with the exception of the ATP-binding site, they do not contain any sequence motifs characteristic of the eukaryotic protein kinase superfamily. Comparison of different eEF-2 kinase sequences reveals a highly conserved region of ≈200 amino acids which was found to be homologous to the catalytic domain of the recently described myosin heavy chain kinase A (MHCK A) from Dictyostelium. This suggests that eEF-2 kinase and MHCK A are members of a new class of protein kinases with a novel catalytic domain structure.
Resumo:
To examine the role of microtubules in growth cone turning, we have compared the microtubule organization in growth cones advancing on uniform laminin substrates with their organization in growth cones turning at a laminin–tenascin border. The majority (82%) of growth cones on laminin had a symmetrical microtubule organization, in which the microtubules entering the growth cone splay out toward the periphery of the growth cone. Growth cones at tenascin borders had symmetrically arranged microtubules in only 34% of cases, whereas in the majority of cases the microtubules were displaced toward one-half of the growth cone, presumably stabilizing in the direction of the turn along the tenascin border. These results suggest that reorganization of microtubules could underlie growth cone turning. Further evidence for the involvement of microtubule rearrangement in growth cone turning was provided by experiments in which growth cones approached tenascin borders in the presence of nanomolar concentrations of the microtubule stabilizing compound, Taxol. Taxol altered the organization of microtubules in growth cones growing on laminin by restricting their distribution to the proximal regions of the growth cone and increasing their bundling. Taxol did not stop growth cone advance on laminin. When growing in the presence of Taxol, growth cones at tenascin borders were not able to turn and grow along the laminin–tenascin border, and consequently stopped at the border. Growth cones were arrested at borders for as long as Taxol was present (up to 6 h) without showing any signs of drug toxicity. These effects of Taxol were reversible. Together, these results suggest that microtubule reorganization in growth cones is a necessary event in growth cone turning.