4 resultados para SYNCHRONOUS GENERATOR
em National Center for Biotechnology Information - NCBI
Resumo:
Although neuronal synchronization has been shown to exist in primary motor cortex (MI), very little is known about its possible contribution to coding of movement. By using cross-correlation techniques from multi-neuron recordings in MI, we observed that activity of neurons commonly synchronized around the time of movement initiation. For some cell pairs, synchrony varied with direction in a manner not readily predicted by the firing of either neuron. Information theoretic analysis demonstrated quantitatively that synchrony provides information about movement direction beyond that expected by simple rate changes. Thus, MI neurons are not simply independent encoders of movement parameters but rather engage in mutual interactions that could potentially provide an additional coding dimension in cortex.
Resumo:
To date, the lack of a method for inducing plant cells and their Golgi stacks to differentiate in a synchronous manner has made it difficult to characterize the nature and extent of Golgi retailoring in biochemical terms. Here we report that auxin deprivation can be used to induce a uniform population of suspension-cultured tobacco (Nicotiana tabacum cv BY-2) cells to differentiate synchronously during a 4-d period. Upon removal of auxin, the cells stop dividing, undergo elongation, and differentiate in a manner that mimics the formation of slime-secreting epidermal and peripheral root-cap cells. The morphological changes to the Golgi apparatus include a proportional increase in the number of trans-Golgi cisternae, a switch to larger-sized secretory vesicles that bud from the trans-Golgi cisternae, and an increase in osmium staining of the secretory products. Biochemical alterations include an increase in large, fucosylated, mucin-type glycoproteins, changes in the types of secreted arabinogalactan proteins, and an increase in the amounts and types of molecules containing the peripheral root-cap-cell-specific epitope JIM 13. Taken together, these findings support the hypothesis that auxin deprivation can be used to induce tobacco BY-2 cells to differentiate synchronously into mucilage-secreting cells.
Resumo:
Localization of the central rhythm generator (CRG) of spontaneous consummatory licking was studied in freely moving rats by microinjection of tetrodotoxin (TTX) into the pontine reticular formation. Maximum suppression of spontaneous water consumption was elicited by TTX (1 ng) blockade of the oral part of the nucleus reticularis gigantocellularis (NRG), whereas TTX injections into more caudal or rostral locations caused significantly weaker disruption of drinking. To verify the assumption that TTX blocked the proper CRG of licking rather than some relay in its output, spontaneously drinking thirsty rats were intracranially stimulated via electrodes chronically implanted into the oral part of the NRG. Lick-synchronized stimulation (a 100-ms train of 0.1-ms-wide rectangular pulses at 100 Hz and 25-150 microA) applied during continuous licking (after eight regular consecutive licks) caused a phase shift of licks emitted after stimulus delivery. The results suggest that the stimulation has reset the CRG of licking without changing its frequency. The reset-inducing threshold current was lowest during the tongue retraction and highest during the tongue protrusion period of the lick cycle. It is concluded that the CRG of licking is located in the oral part of NRG.
Resumo:
In mammals, gonadal function is controlled by a hypothalamic signal generator that directs the pulsatile release of gonadotropin-releasing hormone (GnRH) and the consequent pulsatile secretion of luteinizing hormone. In female rhesus monkeys, the electrophysiological correlates of GnRH pulse generator activity are abrupt, rhythmic increases in hypothalamic multiunit activity (MUA volleys), which represent the simultaneous increase in firing rate of individual neurons. MUA volleys are arrested by estradiol, either spontaneously at midcycle or after the administration of the steroid. Multiunit recordings, however, provide only a measure of total neuronal activity, leaving the behavior of the individual cells obscure. This study was conducted to determine the mode of action of estradiol at the level of single neurons associated with the GnRH pulse generator. Twenty-three such single units were identified by cluster analysis of multiunit recordings obtained from a total of six electrodes implanted in the mediobasal hypothalamus of three ovariectomized rhesus monkeys, and their activity was monitored before and after estradiol administration. The bursting of all 23 units was arrested within 4 h of estradiol administration although their baseline activity was maintained. The bursts of most units reappeared at the same time as the MUA volleys, the recovery of some was delayed, and one remained inhibited for the duration of the study (43 days). The results indicate that estradiol does not desynchronize the bursting of single units associated with the GnRH pulse generator but that it inhibits this phenomenon. The site and mechanism of action of estradiol in this regard remain to be determined.