1 resultado para SUPERFICIE FOLIAR

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungal pathogens perceive and respond to molecules from the plant, triggering pathogenic development. Transduction of these signals may use heterotrimeric G proteins, and it is thought that protein phosphorylation cascades are also important. We have isolated a mitogen-activated protein kinase homolog from the corn pathogen Cochliobolus heterostrophus to test its role as a component of the transduction pathways. The new gene, CHK1, has a deduced amino acid sequence 90% identical to Pmk1 of the rice blast fungus Magnaporthe grisea and 59% identical to Fus3 of Saccharomyces cerevisiae. A series of chk1 deletion mutants has poorly developed aerial hyphae, autolysis, and no conidia. No pseudothecia are formed when a cross between two Δchk1 mutants is attempted. The ability of Δchk1 mutants to infect corn plants is reduced severely. The growth pattern of hyphae on a glass surface is strikingly altered from that of the wild type, forming coils or loops, but no appressoria. This set of phenotypes overlaps only partially with that of pmk1 mutants, the homologous gene of the rice blast fungus. In particular, sexual and asexual sporulation both require Chk1 function in Cochliobolus heterostrophus, in contrast to Pmk1, but perhaps more similar to yeast, where Fus3 transmits the mating signal. Chk1 is required for efficient colonization of leaf tissue, which can be compared with filamentous invasive growth of yeast, modulated through another closely related mitogen-activated protein kinase, Kss1. Ubiquitous signaling elements thus are used in diverse ways in different plant pathogens, perhaps the result of coevolution of the transducers and their targets.