3 resultados para SULFATE-REDUCING BACTERIA
em National Center for Biotechnology Information - NCBI
Resumo:
The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.
Resumo:
Sulfate-assimilating organisms reduce inorganic sulfate for Cys biosynthesis. There are two leading hypotheses for the mechanism of sulfate reduction in higher plants. In one, adenosine 5′-phosphosulfate (APS) (5′-adenylylsulfate) sulfotransferase carries out reductive transfer of sulfate from APS to reduced glutathione. Alternatively, the mechanism may be similar to that in bacteria in which the enzyme, 3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase, catalyzes thioredoxin (Trx)-dependent reduction of PAPS. Three classes of cDNA were cloned from Arabidopsis thaliana termed APR1, -2, and -3, that functionally complement a cysH, PAPS reductase mutant strain of Escherichia coli. The coding sequence of the APR clones is homologous with PAPS reductases from microorganisms. In addition, a carboxyl-terminal domain is homologous with members of the Trx superfamily. Further genetic analysis showed that the APR clones can functionally complement a mutant strain of E. coli lacking Trx, and an APS kinase, cysC. mutant. These results suggest that the APR enzyme may be a Trx-independent APS reductase. Cell extracts of E. coli expressing APR showed Trx-independent sulfonucleotide reductase activity with a preference for APS over PAPS as a substrate. APR-mediated APS reduction is dependent on dithiothreitol, has a pH optimum of 8.5, is stimulated by high ionic strength, and is sensitive to inactivation by 5′-adenosinemonophosphate (5′-AMP). 2′-AMP, or 3′-phosphoadenosine-5′-phosphate (PAP), a competitive inhibitor of PAPS reductase, do not affect activity. The APR enzymes may be localized in different cellular compartments as evidenced by the presence of an amino-terminal transit peptide for plastid localization in APR1 and APR3 but not APR2. Southern blot analysis confirmed that the APR clones are members of a small gene family, possibly consisting of three members.
Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria.
Resumo:
DNA repair alkyltransferases protect organisms against the cytotoxic, mutagenic, and carcinogenic effects of alkylating agents by transferring alkyl adducts from DNA to an active cysteine on the protein, thereby restoring the native DNA structure. We used random sequence substitutions to gain structure-function information about the human O6-methylguanine-DNA methyltransferase (EC 2.1.1.63), as well as to create active mutants. Twelve codons surrounding but not including the active cysteine were replaced by a random nucleotide sequence, and the resulting random library was selected for the ability to provide alkyltransferase-deficient Escherichia coli with resistance to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Few amino acid changes were tolerated in this evolutionarily conserved region of the protein. One mutation, a valine to phenylalanine change at codon 139 (V139F), was found in 70% of the selected mutants; in fact, this mutant was selected much more frequently than the wild type. V139F provided alkyltransferase-deficient bacteria with greater protection than the wild-type protein against both the cytotoxic and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine, increasing the D37 over 4-fold and reducing the mutagenesis rate 2.7-5.5-fold. This mutant human alkyltransferase, or others similarly created and selected, could be used to protect bone marrow cells from the cytotoxic side effects of alkylation-based chemotherapeutic regimens.