14 resultados para STRUCTURE ANALYSIS

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of halorhodopsin was determined in (centrosymmetric) projection to 6-A resolution by direct methods that use only the amplitudes of the electron diffraction pattern. A multisolution technique was used to generate initial 15-A-resolution basis sets, and after selection of the best phase set (by the closest match of magnitude of Eobs and magnitude of Ecalc), annealing of individual reflections was used to improve its accuracy. The Sayre equation was then used to expand the phase terms to 10 A, followed again by phase annealing. A final expansion with the Sayre equation enlarged this corrected phase set to 6 A. When the condition of density flatness was used to locate the best phase solution after each extension, a final structure could be observed that was quite similar to the one found earlier by analysis of electron micrographs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A class of potent nonpeptidic inhibitors of human immunodeficiency virus protease has been designed by using the three-dimensional structure of the enzyme as a guide. By employing iterative protein cocrystal structure analysis, design, and synthesis the binding affinity of the lead compound was incrementally improved by over four orders of magnitude. An inversion in inhibitor binding mode was observed crystallographically, providing information critical for subsequent design and highlighting the utility of structural feedback in inhibitor optimization. These inhibitors are selective for the viral protease enzyme, possess good antiviral activity, and are orally available in three species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteins of the kinesin superfamily define a class of microtubule-dependent motors that play crucial roles in cell division and intracellular transport. To study the molecular mechanism of axonal transport, a cDNA encoding a new kinesin-like protein called KIF3C was cloned from a mouse brain cDNA library. Sequence and secondary structure analysis revealed that KIF3C is a member of the KIF3 family. In contrast to KIF3A and KIF3B, Northern and Western analysis indicated that KIF3C expression is highly enriched in neural tissues such as brain, spinal cord, and retina. When anti-KIF3C antibodies were used to stain the cerebellum, the strongest signal came from the cell bodies and dendrites of Purkinje cells. In retina, anti-KIF3C mainly stains the ganglion cells. Immunolocalization showed that the KIF3C motor in spinal cord and sciatic nerve is mainly localized in cytoplasm. In spinal cord, the KIF3C staining was punctate; double labeling with anti-giantin and anti-KIF3C showed a clear concentration of the motor protein in the Golgi complex. Staining of ligated sciatic nerves demonstrated that the KIF3C motor accumulated at the proximal side of the ligated nerve, which suggests that KIF3C is an anterograde motor. Immunoprecipitation experiments revealed that KIF3C and KIF3A, but not KIF3B, were coprecipitated. These data, combined with previous data from other labs, indicate that KIF3C and KIF3B are “variable” subunits that associate with a common KIF3A subunit, but not with each other. Together these results suggest that KIF3 family members combinatorially associate to power anterograde axonal transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the light induced two-electron, two-proton reduction of a bound quinone molecule QB (the secondary quinone acceptor). A unique pathway for proton transfer to the QB site had so far not been determined. To study the molecular basis for proton transfer, we investigated the effects of exogenous metal ion binding on the kinetics of the proton-assisted electron transfer kAB(2) (QA−•QB−• + H+ → QA(QBH)−, where QA is the primary quinone acceptor). Zn2+ and Cd2+ bound stoichiometrically to the RC (KD ≤ 0.5 μM) and reduced the observed value of kAB(2) 10-fold and 20-fold (pH 8.0), respectively. The bound metal changed the mechanism of the kAB(2) reaction. In native RCs, kAB(2) was previously shown to be rate-limited by electron transfer based on the dependence of kAB(2) on the driving force for electron transfer. Upon addition of Zn2+ or Cd2+, kAB(2) became approximately independent of the electron driving force, implying that the rate of proton transfer was reduced (≥ 102-fold) and has become the rate-limiting step. The lack of an effect of the metal binding on the charge recombination reaction D+•QAQB−• → DQAQB suggests that the binding site is located far (>10 Å) from QB. This hypothesis is confirmed by preliminary x-ray structure analysis. The large change in the rate of proton transfer caused by the stoichiometric binding of the metal ion shows that there is one dominant site of proton entry into the RC from which proton transfer to QB−• occurs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1-Å resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A short interspersed nuclear element, Mg-SINE, was isolated and characterized from the genome of the rice blast fungus, Magnaporthe grisea. Mg-SINE was isolated as an insertion element within Pot2, an inverted-repeat transposon from M. grisea and shows typical features of a mammalian SINE. Mg-SINE is present as a 0.47-kb interspersed sequence at approximately 100 copies per haploid genome in both rice and non-rice isolates of M. grisea, indicating a common evolutionary origin. Secondary structure analysis of Mg-SINE revealed a tRNA-related region at the 5' end which folds into a cloverleaf structure. Genomic fusions resulting in chimeric Mg-SINEs (Ch-SINEs) composed of a sequence homologous to Mg-SINE at the 3' end and an unrelated sequence at its 5' end were also isolated, indicating that this and other DNA rearrangements mediated by these elements may have a major effect on the genomic architecture of this fungus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rate constants for reduction of the flavoenzyme, l-lactate oxidase, and a mutant (in which alanine 95 is replaced by glycine), by a series of para-substituted mandelates, in both the 2-1H- and 2-2H- forms, have been measured by rapid reaction spectrophotometry. In all cases, significant isotope effects (1H/2H = 3–7) on the rate constants of flavin reduction were found, indicating that flavin reduction is a direct measure of α-C-H bond breakage. The rate constants show only a small influence of the electronic characteristics of the substituents, but show a good correlation when combined with some substituent volume parameters. A surprisingly good correlation is found with the molecular mass of the substrate. The results are compatible with any mechanism in which there is little development of charge in the transition state. This could be a transfer of hydride to the flavin N(5) position or a synchronous mechanism in which the α-C-H is formally abstracted as a H+ while the resulting charge is simultaneously neutralized by another event.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromosomal forms of Anopheles gambiae, given the informal designations Bamako, Mopti, and Savannah, have been recognized by the presence or absence of four paracentric inversions on chromosome 2. Studies of karyotype frequencies at sites where the forms occur in sympatry have led to the suggestion that these forms represent species. We conducted a study of the genetic structure of populations of An. gambiae from two villages in Mali, west Africa. Populations at each site were composed of the Bamako and Mopti forms and the sibling species, Anopheles arabiensis. Karyotypes were determined for each individual mosquito and genotypes at 21 microsatellite loci determined. A number of the microsatellites have been physically mapped to polytene chromosomes, making it possible to select loci based on their position relative to the inversions used to define forms. We found that the chromosomal forms differ at all loci on chromosome 2, but there were few differences for loci on other chromosomes. Geographic variation was small. Gene flow appears to vary among different regions within the genome, being lowest on chromosome 2, probably due to hitchhiking with the inversions. We conclude that the majority of observed genetic divergence between chromosomal forms can be explained by forces that need not involve reproductive isolation, although reproductive isolation is not ruled out. We found low levels of gene flow between the sibling species Anopheles gambiae and Anopheles arabiensis, similar to estimates based on observed frequencies of hybrid karyotypes in natural populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Site-directed mutagenesis and combinatorial libraries are powerful tools for providing information about the relationship between protein sequence and structure. Here we report two extensions that expand the utility of combinatorial mutagenesis for the quantitative assessment of hypotheses about the determinants of protein structure. First, we show that resin-splitting technology, which allows the construction of arbitrarily complex libraries of degenerate oligonucleotides, can be used to construct more complex protein libraries for hypothesis testing than can be constructed from oligonucleotides limited to degenerate codons. Second, using eglin c as a model protein, we show that regression analysis of activity scores from library data can be used to assess the relative contributions to the specific activity of the amino acids that were varied in the library. The regression parameters derived from the analysis of a 455-member sample from a library wherein four solvent-exposed sites in an α-helix can contain any of nine different amino acids are highly correlated (P < 0.0001, R2 = 0.97) to the relative helix propensities for those amino acids, as estimated by a variety of biophysical and computational techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insects in the order Plecoptera (stoneflies) use a form of two-dimensional aerodynamic locomotion called surface skimming to move across water surfaces. Because their weight is supported by water, skimmers can achieve effective aerodynamic locomotion even with small wings and weak flight muscles. These mechanical features stimulated the hypothesis that surface skimming may have been an intermediate stage in the evolution of insect flight, which has perhaps been retained in certain modern stoneflies. Here we present a phylogeny of Plecoptera based on nucleotide sequence data from the small subunit rRNA (18S) gene. By mapping locomotor behavior and wing structural data onto the phylogeny, we distinguish between the competing hypotheses that skimming is a retained ancestral trait or, alternatively, a relatively recent loss of flight. Our results show that basal stoneflies are surface skimmers, and that various forms of surface skimming are distributed widely across the plecopteran phylogeny. Stonefly wings show evolutionary trends in the number of cross veins and the thickness of the cuticle of the longitudinal veins that are consistent with elaboration and diversification of flight-related traits. These data support the hypothesis that the first stoneflies were surface skimmers, and that wing structures important for aerial flight have become elaborated and more diverse during the radiation of modern stoneflies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the genetic organisation of six prophages present in the genome of Lactococcus lactis IL1403. The three larger prophages (36–42 kb), belong to the already described P335 group of temperate phages, whereas the three smaller ones (13–15 kb) are most probably satellites relying on helper phage(s) for multiplication. These data give a new insight into the genetic structure of lactococcal phage populations. P335 temperate phages have variable genomes, sharing homology over only 10–33% of their length. In contrast, virulent phages have highly similar genomes sharing homology over >90% of their length. Further analysis of genetic structure in all known groups of phages active on other bacterial hosts such as Escherichia coli, Bacillus subtilis, Mycobacterium and Streptococcus thermophilus confirmed the existence of two types of genetic structure related to the phage way of life. This might reflect different intensities of horizontal DNA exchange: low among purely virulent phages and high among temperate phages and their lytic homologues. We suggest that the constraints on genetic exchange among purely virulent phages reflect their optimal genetic organisation, adapted to a more specialised and extreme form of parasitism than temperate/lytic phages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immune challenge to the insect Podisus maculiventris induces synthesis of a 21-residue peptide with sequence homology to frog skin antimicrobial peptides of the brevinin family. The insect and frog peptides have in common a C-terminally located disulfide bridge delineating a cationic loop. The peptide is bactericidal and fungicidal, exhibiting the largest antimicrobial spectrum observed so far for an insect defense peptide. An all-D-enantiomer is nearly inactive against Gram-negative bacteria and some Gram-positive strains but is fully active against fungi and other Gram-positive bacteria, suggesting that more than one mechanism accounts for the antimicrobial activity of this peptide. Studies with truncated synthetic isoforms underline the role of the C-terminal loop and flanking residues for the activity of this molecule for which we propose the name thanatin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.