9 resultados para STROKE PATIENTS
em National Center for Biotechnology Information - NCBI
Resumo:
The only treatment of patients with acute ischemic stroke is thrombolytic therapy, which benefits only a fraction of stroke patients. Both human and experimental studies indicate that ischemic stroke involves secondary inflammation that significantly contributes to the outcome after ischemic insult. Minocycline is a semisynthetic second-generation tetracycline that exerts antiinflammatory effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against focal brain ischemia with a wide therapeutic window. Using a rat model of transient middle cerebral artery occlusion, we show that daily treatment with minocycline reduces cortical infarction volume by 76 ± 22% when the treatment is started 12 h before ischemia and by 63 ± 35% when started even 4 h after the onset of ischemia. The treatment inhibits morphological activation of microglia in the area adjacent to the infarction, inhibits induction of IL-1β-converting enzyme, and reduces cyclooxygenase-2 expression and prostaglandin E2 production. Minocycline had no effect on astrogliosis or spreading depression, a wave of ionic transients thought to contribute to enlargement of cortical infarction. Treatment with minocycline may act directly on brain cells, because cultured primary neurons were also salvaged from glutamate toxicity. Minocycline may represent a prototype of an antiinflammatory compound that provides protection against ischemic stroke and has a clinically relevant therapeutic window.
Resumo:
Cerebral infarction (stroke) is a potentially disastrous complication of diabetes mellitus, principally because the extent of cortical loss is greater in diabetic patients than in nondiabetic patients. The etiology of this enhanced neurotoxicity is poorly understood. We hypothesized that advanced glycation endproducts (AGEs), which have previously been implicated in the development of other diabetic complications, might contribute to neurotoxicity and brain damage during ischemic stroke. Using a rat model of focal cerebral ischemia, we show that systemically administered AGE-modified bovine serum albumin (AGE-BSA) significantly increased cerebral infarct size. The neurotoxic effects of AGE-BSA administration were dose- and time-related and associated with a paradoxical increase in cerebral blood flow. Aminoguanidine, an inhibitor of AGE cross-linking, attenuated infarct volume in AGE-treated animals. We conclude that AGEs may contribute to the increased severity of stroke associated with diabetes and other conditions characterized by AGE accumulation.