35 resultados para STOMATITIS
em National Center for Biotechnology Information - NCBI
Ecological factors rather than temporal factors dominate the evolution of vesicular stomatitis virus
Resumo:
Vesicular stomatitis New Jersey virus (VSV-NJ) is a rhabdovirus that causes economically important disease in cattle and other domestic animals in endemic areas from southeastern United States to northern South America. Its negatively stranded RNA genome is capable of undergoing rapid evolution, which allows phylogenetic analysis and molecular epidemiology studies to be performed. Previous epidemiological studies in Costa Rica showed the existence of at least two distinct ecological zones of high VSV-NJ activity, one located in the highlands (premontane tropical moist forest) and the other in the lowlands (tropical dry forest). We wanted to test the hypothesis that the viruses circulating in these ecological zones were genetically distinct. For this purpose, we sequenced the hypervariable region of the phosphoprotein gene for 50 VSV-NJ isolates from these areas. Phylogenetic analysis showed that viruses from each ecological zone had distinct genotypes. These genotypes were maintained in each area for periods of up to 8 years. This evolutionary pattern of VSV-NJ suggests an adaptation to ecological factors that could exert selective pressure on the virus. As previous data indicated an absence of virus adaptation to factors related to the bovine host (including immunological pressure), it appears that VSV genetic divergence represents positive selection to adapt to specific vectors and/or reservoirs at each ecological zone.
Resumo:
In a previous study we demonstrated that vesicular stomatitis virus (VSV) can be used as a vector to express a soluble protein in mammalian cells. Here we have generated VSV recombinants that express four different membrane proteins: the cellular CD4 protein, a CD4-G hybrid protein containing the ectodomain of CD4 and the transmembrane and cytoplasmic tail of the VSV glycoprotein (G), the measles virus hemagglutinin, or the measles virus fusion protein. The proteins were expressed at levels ranging from 23-62% that of VSV G protein and all were transported to the cell surface. In addition we found that all four proteins were incorporated into the membrane envelope of VSV along with the VSV G protein. The levels of incorporation of these proteins varied from 6-31% of that observed for VSV G. These results suggest that many different membrane proteins may be co-incorporated quite efficiently with VSV G protein into budding VSV virus particles and that specific signals are not required for this co-incorporation process. In fact, the CD4-G protein was incorporated with the same efficiency as wild type CD4. Electron microscopy of virions containing CD4 revealed that the CD4 molecules were dispersed throughout the virion envelope among the trimeric viral spike glycoproteins. The recombinant VSV-CD4 virus particles were about 18% longer than wild type virions, reflecting the additional length of the helical nucleocapsid containing the extra gene. Recombinant VSVs carrying foreign antigens on the surface of the virus particle may be useful for viral targeting, membrane protein purification, and for generation of immune responses.
Resumo:
We have generated a human 293-derived retroviral packaging cell line (293GPG) capable of producing high titers of recombinant Moloney murine leukemia virus particles that have incorporated the vesicular stomatitis virus G (VSV-G) protein. To achieve expression of the retroviral gag-pol polyprotein, the precise coding sequences for gag-pol were introduced into a vector which utilizes totally nonretroviral signals for gene expression. Because constitutive expression of the VSV-G protein is toxic in 293 cells, we used the tetR/VP 16 transactivator and teto minimal promoter system for inducible, tetracycline-regulatable expression of VSV-G. After stable transfection of the 293GPG packaging cell line with the MFG.SnlsLacZ retroviral vector construct, it was possible to readily isolate stable virus-producing cell lines with titers approaching 10(7) colony-forming units/ml. Transient transfection of 293GPG cells using a modified version of MFG.SnlsLacZ, in which the cytomegalovirus IE promoter was used to drive transcription of the proviral genome, led to titers of approximately 10(6) colony-forming units/ml. The retroviral/VSV-G pseudotypes generated using 293GPG cells were significantly more resistant to human complement than commonly used amphotropic vectors and could be highly concentrated (> 1000-fold). This new packaging cell line may prove to be particularly useful for assessing the potential use of retroviral vectors for direct in vivo gene transfer. The design of the cell line also provides at least theoretical advantages over existing cell lines with regard to the possible release of replication-competent virus.
Resumo:
We have previously shown that the G protein of vesicular stomatitis virus (VSV-G) can be incorporated into the virions of retroviruses. Since expression of VSV-G is toxic to most mammalian cells, development of stable VSV-G packaging cell lines requires inducible VSV-G expression. We have modified the tetracycline-inducible system by fusing the ligand binding domain of the estrogen receptor to the carboxy terminus of a tetracycline-regulated transactivator. Using this system, we show that VSV-G expression is tetracycline-dependent and can be modulated by beta-estradiol. Stable packaging cell lines can readily be established and high-titer pseudotyped retroviral vectors can be generated upon induction of VSV-G expression.
Resumo:
A new means of direct visualization of the early events of viral infection by selective fluorescence labeling of viral proteins coupled with digital imaging microscopy is reported. The early phases of viral infection have great importance for understanding viral replication and pathogenesis. Vesicular stomatitis virus, the best-studied rhabdovirus, is composed of an RNA genome of negative sense, five viral proteins, and membrane lipids derived from the host cell. The glycoprotein of vesicular stomatitis virus was labeled with fluorescein isothiocyanate, and the labeled virus was incubated with baby hamster kidney cells. After initiation of infection, the fluorescence of the labeled glycoprotein was first seen inside the cells in endocytic vesicles. The fluorescence progressively migrated to the nucleus of infected cells. After 1 h of infection, the virus glycoprotein was concentrated in the nucleus and could be recovered intact in a preparation of purified nuclei. These results suggest that uncoating of the viral RNA occurs close to the nuclear membrane, which would precede transcription of the leader RNA that enters the nucleus to shut off cellular RNA synthesis and DNA replication.
Resumo:
Infectious vesicular stomatitis virus (VSV), the prototypic nonsegmented negative-strand RNA virus, was recovered from a full-length cDNA clone of the viral genome. Bacteriophage T7 RNA polymerase expressed from a recombinant vaccinia virus was used to drive the synthesis of a genome-length positive-sense transcript of VSV from a cDNA clone in baby hamster kidney cells that were simultaneously expressing the VSV nucleocapsid protein, phosphoprotein, and polymerase from separate plasmids. Up to 10(5) infectious virus particles were obtained from transfection of 10(6) cells, as determined by plaque assays. This virus was amplified on passage, neutralized by VSV-specific antiserum, and shown to possess specific nucleotide sequence markers characteristic of the cDNA. This achievement renders the biology of VSV fully accessible to genetic manipulation of the viral genome. In contrast to the success with positive-sense RNA, attempts to recover infectious virus from negative-sense T7 transcripts were uniformly unsuccessful, because T7 RNA polymerase terminated transcription at or near the VSV intergenic junctions.
Resumo:
We assembled a DNA clone containing the 11,161-nt sequence of the prototype rhabdovirus, vesicular stomatitis virus (VSV), such that it could be transcribed by the bacteriophage T7 RNA polymerase to yield a full-length positive-strand RNA complementary to the VSV genome. Expression of this RNA in cells also expressing the VSV nucleocapsid protein and the two VSV polymerase subunits resulted in production of VSV with the growth characteristics of wild-type VSV. Recovery of virus from DNA was verified by (i) the presence of two genetic tags generating restriction sites in DNA derived from the genome, (ii) direct sequencing of the genomic RNA of the recovered virus, and (iii) production of a VSV recombinant in which the glycoprotein was derived from a second serotype. The ability to generate VSV from DNA opens numerous possibilities for the genetic analysis of VSV replication. In addition, because VSV can be grown to very high titers and in large quantities with relative ease, it may be possible to genetically engineer recombinant VSVs displaying foreign antigens. Such modified viruses could be useful as vaccines conferring protection against other viruses.
Resumo:
The intracellular distribution of RNAs depends on interactions of cis-acting nuclear export elements or nuclear retention elements with trans-acting nuclear transport or retention factors. To learn about the relationship between export and retention, we isolated RNAs that are exported from nuclei of Xenopus laevis oocytes even when most RNA export is blocked by an inhibitor of Ran-dependent nucleocytoplasmic transport, the Matrix protein of vesicular stomatitis virus. Export of the selected RNAs is saturable and specific. When present in chimeric RNAs, the selected sequences acted like nuclear export elements in promoting efficient export of RNAs that otherwise are not exported; the pathway used for export of these chimeric RNAs is that used for the selected RNAs alone. However, these chimeric RNAs, unlike the selected RNAs, were not exported in the presence of Matrix protein; thus, the nonselected sequences can cause retention of the selected RNA sequences under conditions of impaired nucleocytoplasmic transport. We propose that most RNAs are transiently immobilized in the nucleus and that release of these RNAs is an essential and early step in export. Release correlates with functional Ran-dependent transport, and the lack of export of chimeric RNAs may result from interference with the Ran system.
Resumo:
Spectrin (βIΣ∗) and ankyrin (AnkG119) associate with Golgi membranes and the dynactin complex, but their role in vesicle trafficking remains uncertain. We find that the actin-binding domain and membrane-association domain 1 (MAD1) of βI spectrin together form a constitutive Golgi targeting signal in transfected MDCK cells. Expression of this signal in transfected cells disrupts the endogenous Golgi spectrin skeleton and blocks transport of α- and β-Na,K-ATPase and vesicular stomatitis virus-G protein from the endoplasmic reticulum (ER) but does not disrupt the formation of Golgi stacks, the distribution of β-COP, or the transport and surface display of E-cadherin. The Golgi spectrin skeleton is thus required for the transport of a subset of membrane proteins from the ER to the Golgi. We postulate that together with polyfunctional adapter proteins such as AnkG119, Golgi spectrin forms a docking complex that acts prior to the cis-Golgi, presumably with vesicular–tubular clusters (VTCs or ERGIC), to sequester specific membrane proteins into vesicles transiting between the ER and Golgi, and subsequently (probably involving other isoforms of spectrin and ankyrin) to mediate cargo transport within the Golgi and to other membrane compartments. We hypothesize that this vesicular spectrin–ankyrin adapter-protein trafficking (or tethering) system (SAATS) mediates the capture and transport of many membrane proteins and acts in conjunction with vesicle-targeting molecules to effect the efficient transport of cargo proteins.
Resumo:
A marked suppression of immune function has long been recognized as a major cause of the high morbidity and mortality rate associated with acute measles. As a hallmark of measles virus (MV)-induced immunosuppression, peripheral blood lymphocytes (PBLs) isolated from patients exhibit a significantly reduced capacity to proliferate in response to mitogens, allogens, or recall antigens. In an in vitro system we show that proliferation of naive PBLs [responder cells (RCs)] in response to a variety of stimuli was significantly impaired after cocultivation with MV-infected, UV-irradiated autologous PBLs [presenter cells (PCs)]. We further observed that a 50% reduction in proliferation of RCs could still be observed when the ratio of PC to RC was 1:100. The effect was completely abolished after physical separation of the two populations, which suggests that soluble factors were not involved. Proliferative inhibition of the RCs was observed after short cocultivation with MV-infected cells, which indicates that surface contact between one or more viral proteins and the RC population was required. We identified that the complex of both MV glycoproteins, F and H, is critically involved in triggering MV-induced suppression of mitogen-dependent proliferation, since the effect was not observed (i) using a recombinant MV in which F and H were replaced with vesicular stomatitis virus G or (ii) when either of these proteins was expressed alone. Coexpression of F and H, however, lead to a significant proliferative inhibition in the RC population. Our data indicate that a small number of MV-infected PBLs can induce a general nonresponsiveness in uninfected PBLs by surface contact, which may, in turn, account for the general suppression of immune responses observed in patients with acute measles.
Resumo:
We recently cloned an inward-rectifying K channel (Kir) cDNA, CCD-IRK3 (mKir 2.3), from a cortical collecting duct (CCD) cell line. Although this recombinant channel shares many functional properties with the “small-conductance” basolateral membrane Kir channel in the CCD, its precise subcellular localization has been difficult to elucidate by conventional immunocytochemistry. To circumvent this problem, we studied the targeting of several different epitope-tagged CCD-IRK3 in a polarized renal epithelial cell line. Either the 11-amino acid span of the vesicular stomatitis virus (VSV) G glycoprotein (P5D4 epitope) or a 6-amino acid epitope of the bovine papilloma virus capsid protein (AU1) was genetically engineered on the extreme N terminus of CCD-IRK3. As determined by patch-clamp and two-microelectrode voltage-clamp analyses in Xenopus oocytes, neither tag affected channel function; no differences in cation selectivity, barium block, single channel conductance, or open probability could be distinguished between the wild-type and the tagged constructs. MDCK cells were transfected with tagged CCD-IRK3, and several stable clonal cell lines were generated by neomycin-resistance selection. Immunoprecipitation studies with anti-P5D4 or anti-AU1 antibodies readily detected the predicted-size 50-kDa protein in the transfected cells lines but not in wild-type or vector-only (PcB6) transfected MDCK cells. As visualized by indirect immunofluorescence and confocal microscopy, both the tagged CCD-IRK3 forms were exclusively detected on the basolateral membrane. To assure that the VSV G tag was not responsible for the targeting, the P5D4 epitope modified by a site-directed mutagenesis (Y2F) to remove a potential basolateral targeting signal contained in this tag. VSV(Y2F) was also detected exclusively on the basolateral membrane, confirming bona fide IRK3 basolateral expression. These observations, with our functional studies, suggest that CCD-IRK3 may encode the small-conductance CCD basolateral K channel.
Resumo:
We have examined the role played by protein kinase A (PKA) in vesicle-mediated protein transport from the trans-Golgi network (TGN) to the cell surface. In vivo this transport step was inhibited by inhibitors of PKA catalytic subunits (C-PKA) such as the compound known as H89 and a myristoylated form of the inhibitory peptide sequence contained in the thermostable PKA inhibitor. Inhibition by H89 occurred at an early stage during the transfer of vesicular stomatitis virus G glycoprotein from the TGN to the cell surface. Reversal from this inhibition correlated with a transient increase in the number of free coated vesicles in the Golgi area. Vesicle budding from the TGN was studied in vitro using vesicular stomatitis virus-infected, permeabilized cells. Addition to this assay of C-PKA stimulated vesicle release while it was suppressed by PKA inhibitory peptide, H89, and antibody against C-PKA. Furthermore, vesicle release was decreased when PKA-depleted cytosol was used and restored by addition of C-PKA. These results indicate a regulatory role for PKA activity in the production of constitutive transport vesicles from the TGN.
Resumo:
Ebola virus causes hemorrhagic fever in humans and nonhuman primates, resulting in mortality rates of up to 90%. Studies of this virus have been hampered by its extraordinary pathogenicity, which requires biosafety level 4 containment. To circumvent this problem, we developed a novel complementation system for functional analysis of Ebola virus glycoproteins. It relies on a recombinant vesicular stomatitis virus (VSV) that contains the green fluorescent protein gene instead of the receptor-binding G protein gene (VSVΔG*). Herein we show that Ebola Reston virus glycoprotein (ResGP) is efficiently incorporated into VSV particles. This recombinant VSV with integrated ResGP (VSVΔG*-ResGP) infected primate cells more efficiently than any of the other mammalian or avian cells examined, in a manner consistent with the host range tropism of Ebola virus, whereas VSVΔG* complemented with VSV G protein (VSVΔG*-G) efficiently infected the majority of the cells tested. We also tested the utility of this system for investigating the cellular receptors for Ebola virus. Chemical modification of cells to alter their surface proteins markedly reduced their susceptibility to VSVΔG*-ResGP but not to VSVΔG*-G. These findings suggest that cell surface glycoproteins with N-linked oligosaccharide chains contribute to the entry of Ebola viruses, presumably acting as a specific receptor and/or cofactor for virus entry. Thus, our VSV system should be useful for investigating the functions of glycoproteins from highly pathogenic viruses or those incapable of being cultured in vitro.
Resumo:
We have tested the impact of tags on the structure and function of indirect flight muscle (IFM)-specific Act88F actin by transforming mutant Drosophila melanogaster, which do not express endogenous actin in their IFMs, with tagged Act88F constructs. Epitope tagging is often the method of choice to monitor the fate of a protein when a specific antibody is not available. Studies addressing the functional significance of the closely related actin isoforms rely almost exclusively on tagged exogenous actin, because only few antibodies exist that can discriminate between isoforms. Thereby it is widely presumed that the tag does not significantly interfere with protein function. However, in most studies the tagged actin is expressed in a background of endogenous actin and, as a rule, represents only a minor fraction of the total actin. The Act88F gene encodes the only Drosophila actin isoform exclusively expressed in the highly ordered IFM. Null mutations in this gene do not affect viability, but phenotypic effects in transformants can be directly attributed to the transgene. Transgenic flies that express Act88F with either a 6x histidine tag or an 11-residue peptide derived from vesicular stomatitis virus G protein at the C terminus were flightless. Overall, the ultrastructure of the IFM resembled that of the Act88F null mutant, and only low amounts of C-terminally tagged actins were found. In contrast, expression of N-terminally tagged Act88F at amounts comparable with that of wild-type flies yielded fairly normal-looking myofibrils and partially reconstituted flight ability in the transformants. Our findings suggest that the N terminus of actin is less sensitive to modifications than the C terminus, because it can be tagged and still polymerize into functional thin filaments.
Resumo:
Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER–Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER–Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15°C is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER–Golgi transport.