2 resultados para STIFFLY-STABLE METHODS
em National Center for Biotechnology Information - NCBI
Resumo:
The development of methods for efficient gene transfer to terminally differentiated retinal cells is important to study the function of the retina as well as for gene therapy of retinal diseases. We have developed a lentiviral vector system based on the HIV that can transduce terminally differentiated neurons of the brain in vivo. In this study, we have evaluated the ability of HIV vectors to transfer genes into retinal cells. An HIV vector containing a gene encoding the green fluorescent protein (GFP) was injected into the subretinal space of rat eyes. The GFP gene under the control of the cytomegalovirus promoter was efficiently expressed in both photoreceptor cells and retinal pigment epithelium. However, the use of the rhodopsin promoter resulted in expression predominantly in photoreceptor cells. Most successfully transduced eyes showed that photoreceptor cells in >80% of the area of whole retina expressed the GFP. The GFP expression persisted for at least 12 weeks with no apparent decrease. The efficient gene transfer into photoreceptor cells by HIV vectors will be useful for gene therapy of retinal diseases such as retinitis pigmentosa.
Resumo:
Barnase is one of the few protein models that has been studied extensively for protein folding. Previous studies led to the conclusion that barnase folds through a very stable submillisecond intermediate (≈3 kcal/mol). The structure of this intermediate was characterized intensively by using a protein engineering approach. This intermediate has now been reexamined with three direct and independent methods. (i) Hydrogen exchange experiments show very small protection factors (≈2) for the putative intermediate, indicating a stability of ≈0.0 kcal/mol. (ii) Denaturant-dependent unfolding of the putative intermediate is noncooperative and indicates a stability less than 0.0 kcal/mol. (iii) The logarithm of the unfolding rate constant of native barnase vs. denaturant concentrations is not linear. Together with the measured rate (“I” to N), this nonlinear behavior accounts for almost all of the protein stability, leaving only about 0.3 kcal/mol that could be attributed to the rapidly formed intermediate. Other observations previously interpreted to support the presence of an intermediate are now known to have alternative explanations. These results cast doubts on the previous conclusions on the nature of the early folding state in barnase and therefore should have important implications in understanding the early folding events of barnase and other proteins in general.