3 resultados para STEADY-STATE VOLTAMMETRY

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carcinogen-DNA adduct measurements may become useful biomarkers of effective dose and/or early effect. However, validation of this biomarker is required at several levels to ensure that human exposure and response are accurately reflected. Important in this regard is an understanding of the relative biomarker levels in target and nontarget organs and the response of the biomarker under the chronic, low-dose conditions to which humans are exposed. We studied the differences between single and chronic topical application of benzo[a]pyrene (BAP) on the accumulation and removal of BAP-DNA adducts in skin, lung, and liver. Animals were treated with BAP at 10, 25, or 50 nMol topically once or twice per week for as long as 15 weeks. Animals were sacrificed either at 24, 48, or 72 hr after the last dose at 1 and 30 treatments, and after 24 hr for all other treatment groups. Adduct levels increased with increasing dose, but the slope of the dose-response was different in each organ. At low doses, accumulation was linear in skin and lung, but at high doses the adduct levels in the lung increased dramatically at the same time when the levels in the skin reached apparent steady state. In the liver adduct, levels were lower than in target tissues and apparent steady-state adduct levels were reached rapidly, the maxima being independent of dose, suggesting that activating metabolism was saturated in this organ. Removal of adducts from skin, the target organ, was more rapid following single treatment than with chronic exposure. This finding is consistent with earlier data, indicating that some areas of the genome are more resistant to repair. Thus, repeated exposure and repair cycles would be more likely to cause an increase in the proportion of carcinogen-DNA adducts in repair-resistant areas of the genome. These findings indicate that single-dose experiments may underestimate the potential for carcinogenicity for compounds that follow this pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many bacteria, accumulation of K+ at high external osmolalities is accompanied by accumulation of glutamate. To determine whether there is an obligatory relationship between glutamate and K+ pools, we studied mutant strains of Salmonella typhimurium with defects in glutamate synthesis. Enteric bacteria synthesize glutamate by the combined action of glutamine synthetase and glutamate synthase (GS/GOGAT cycle) or the action of biosynthetic glutamate dehydrogenase (GDH). Activity of the GS/GOGAT cycle is required under nitrogen-limiting conditions and is decreased at high external ammonium/ammonia ((NH4)+) concentrations by lowered synthesis of GS and a decrease in its catalytic activity due to covalent modification (adenylylation by GS adenylyltransferase). By contrast, GDH functions efficiently only at high external (NH4)+ concentrations, because it has a low affinity for (NH4)+. When grown at low concentrations of (NH4)+ (< or = 2 mM), mutant strains of S. typhimurium that lack GOGAT and therefore are dependent on GDH have a low glutamate pool and grow slowly; we now demonstrate that they have a low K+ pool. When subjected to a sudden (NH4)+ upshift, strains lacking GS adenylyltransferase drain their glutamate pool into glutamine and grow very slowly; we now find that they also drain their K+ pool. Restoration of the glutamate pool in these strains at late times after shift was accompanied by restoration of the K+ pool and a normal growth rate. Taken together, the results indicate that glutamate is required to maintain the steady-state K+ pool -- apparently no other anion can substitute as a counter-ion for free K+ -- and that K+ glutamate is required for optimal growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady-state visual evoked potentials (SSVEPs) were recorded from the scalp of human subjects who were cued to attend to a rapid sequence of alphanumeric characters presented to one visual half-field while ignoring a concurrent sequence of characters in the opposite half-field. These two-character sequences were each superimposed upon a small square background that was flickered at a rate of 8.6 Hz in one half-field and 12 Hz in the other half-field. The amplitude of the frequency-coded SSVEP elicited by either of the task-irrelevant flickering backgrounds was significantly enlarged when attention was focused upon the character sequence at the same location. This amplitude enhancement with attention was most prominent over occipital-temporal scalp areas of the right cerebral hemisphere regardless of the visual field of stimulation. These findings indicate that the SSVEP reflects an enhancement of neural responses to all stimuli that fall within the "spotlight" of spatial attention, whether or not the stimuli are task-relevant. Recordings of the SSVEP provide a new approach for studying the neural mechanisms and functional properties of selective attention to multi-element visual displays.