4 resultados para SILKWORM

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 50-kDa hemolymph protein, having strong affinity to the cell wall of Gram(-) bacteria, was purified from the hemolymph of the silkworm, Bombyx mori. The cDNA encoding this Gram(-) bacteria-binding protein (GNBP) was isolated from an immunized silkworm fat body cDNA library and sequenced. Comparison of the deduced amino acid sequence with known sequences revealed that GNBP contained a region displaying significant homology to the putative catalytic region of a group of bacterial beta-1,3 glucanases and beta-1,3-1,4 glucanases. Silkworm GNBP was also shown to have amino acid sequence similarity to the vertebrate lipopolysaccharide receptor CD14 and was recognized specifically by a polygonal anti-CD14 antibody. Northern blot analysis showed that GNBP was constitutively expressed in fat body, as well as in cuticular epithelial cells of naive silkworms. Intense transcription was, however, rapidly induced following a cuticular or hemoceolien bacterial challenge. An mRNA that hybridized with GNBP cDNA was also found in the l(2)mbn immunocompetent Drosophila cell line. These observations suggest that GNBP is an inducible acute phase protein implicated in the immune response of the silkworm and perhaps other insects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiprotein bridging factor 1 (MBF1) is a transcriptional cofactor that bridges between the TATA box-binding protein (TBP) and the Drosophila melanogaster nuclear hormone receptor FTZ-F1 or its silkworm counterpart BmFTZ-F1. A cDNA clone encoding MBF1 was isolated from the silkworm Bombyx mori whose sequence predicts a basic protein consisting of 146 amino acids. Bacterially expressed recombinant MBF1 is functional in interactions with TBP and a positive cofactor MBF2. The recombinant MBF1 also makes a direct contact with FTZ-F1 through the C-terminal region of the FTZ-F1 DNA-binding domain and stimulates the FTZ-F1 binding to its recognition site. The central region of MBF1 (residues 35–113) is essential for the binding of FTZ-F1, MBF2, and TBP. When the recombinant MBF1 was added to a HeLa cell nuclear extract in the presence of MBF2 and FTZ622 bearing the FTZ-F1 DNA-binding domain, it supported selective transcriptional activation of the fushi tarazu gene as natural MBF1 did. Mutations disrupting the binding of FTZ622 to DNA or MBF1, or a MBF2 mutation disrupting the binding to MBF1, all abolished the selective activation of transcription. These results suggest that tethering of the positive cofactor MBF2 to a FTZ-F1-binding site through FTZ-F1 and MBF1 is essential for the binding site-dependent activation of transcription. A homology search in the databases revealed that the deduced amino acid sequence of MBF1 is conserved across species from yeast to human.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cuticle of the silkworm Bombyx mori was demonstrated to contain pro-phenol oxidase [zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] and its activating cascade. The activating cascade contained at least one serine proteinase zymogen (latent form of pro-phenol oxidase activating enzyme). When the extracted cascade components were incubated with Ca2+, the latent form of pro-phenol oxidase activating enzyme was itself activated and, in turn, converted through a limited proteolysis of pro-phenol oxidase to phenol oxidase. Immuno-gold localization of prophenol oxidase in the cuticle using a cross-reactive hemolymph anti-pro-phenol oxidase antibody revealed a random distribution of this enzyme in the nonlamellate endocuticle and a specific orderly arrayed pattern along the basal border of the laminae in the lamellate endocuticle of the body wall. Furthermore, prophenol oxidase was randomly distributed in the taenidial cushion of the tracheal cuticle. At the time of pro-phenol oxidase accumulation in the body wall cuticle, no pro-phenol oxidase mRNA could be detected in the epidermal tissue, whereas free-circulating hemocytes contained numerous transcripts of pro-phenol oxidase. Our results suggest that the pro-phenol oxidase is synthesized in the hemocytes and actively transported into the cuticle via the epidermis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pro-phenol oxidase [pro-PO; zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] is present in the hemolymph plasma of the silkworm Bombyx mori. Pro-PO is a heterodimeric protein synthesized by hemocytes. A specific serine proteinase activates both subunits through a limited proteolysis. The amino acid sequences of both subunits were deduced from their respective cDNAs; amino acid sequence homology between the subunits was 51%. The deduced amino acid sequences revealed domains highly homologous to the copper-binding site sequences (copper-binding sites A and B) of arthropod hemocyanins. The overall sequence homology between silkworm pro-PO and arthropod hemocyanins ranged from 29 to 39%. Phenol oxidases from prokaryotes, fungi, and vertebrates have sequences homologous to only the copper-binding site B of arthropod hemocyanins. Thus, silkworm pro-PO DNA described here appears distinctive and more closely related to arthropod hemocyanins. The pro-PO-activating serine proteinase was shown to hydrolyze peptide bonds at the carboxyl side of arginine in the sequence-Asn-49-Arg-50-Phe-51-Gly-52- of both subunits. Amino groups of N termini of both subunits were indicated to be N-acetylated. The cDNAs of both pro-PO subunits lacked signal peptide sequences. This result supports our contention that mature pro-PO accumulates in the cytoplasm of hemocytes and is released by cell rupture, as for arthropod hemocyanins.