78 resultados para SILENT SYNAPSES

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the extent to which hippocampal synapses are typical of those found in other cortical regions, we have carried out a quantitative analysis of olfactory cortical excitatory synapses, reconstructed from serial electron micrograph sections of mouse brain, and have compared these new observations with previously obtained data from hippocampus. Both superficial and deep layer I olfactory cortical synapses were studied. Although individual synapses in each of the areas—CA1 hippocampus, olfactory cortical layer Ia, olfactory cortical area Ib—might plausibly have been found in any of the other areas, the average characteristics of the three synapse populations are distinct. Olfactory cortical synapses in both layers are, on average, about 2.5 times larger than their hippocampal counterparts. The layer Ia olfactory cortical synapses have fewer synaptic vesicles than do the layer Ib synapses, but the absolute number of vesicles docked to the active zone in the layer Ia olfactory cortical synapses is about equal to the docked vesicle number in the smaller hippocampal synapses. As would be predicted from studies on hippocampus that relate paired-pulse facilitation to the number of docked vesicles, the synapses in layer 1a exhibit facilitation, whereas the ones in layer 1b do not. Although hippocampal synapses provide as a good model system for central synapses in general, we conclude that significant differences in the average structure of synapses from one cortical region to another exist, and this means that generalizations based on a single synapse type must be made with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms underlying long-term potentiation in the hippocampus have received much attention because of the likely functional importance of synaptic plasticity for information storage and the development of neuronal connectivity. Surprisingly, it remains unclear whether activity modifies the strength of individual synapses in a digital (all-or-none) or analog (graded) manner. Here we characterize step-like all-or-none transitions from baseline synaptic transmission to potentiated states following protocols for inducing potentiation at putative single CA3-CA1 synaptic connections. Individual synapses appear to have all-or-none potentiation indicative of highly cooperative processes but different thresholds for undergoing potentiation. These results raise the possibility that some forms of synaptic memory may be stored in a digital manner in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coincidence detection is important for functions as diverse as Hebbian learning, binaural localization, and visual attention. We show here that extremely precise coincidence detection is a natural consequence of the normal function of rectifying electrical synapses. Such synapses open to bidirectional current flow when presynaptic cells depolarize relative to their postsynaptic targets and remain open until well after completion of presynaptic spikes. When multiple input neurons fire simultaneously, the synaptic currents sum effectively and produce a large excitatory postsynaptic potential. However, when some inputs are delayed relative to the rest, their contributions are reduced because the early excitatory postsynaptic potential retards the opening of additional voltage-sensitive synapses, and the late synaptic currents are shunted by already opened junctions. These mechanisms account for the ability of the lateral giant neurons of crayfish to sum synchronous inputs, but not inputs separated by only 100 μsec. This coincidence detection enables crayfish to produce reflex escape responses only to very abrupt mechanical stimuli. In light of recent evidence that electrical synapses are common in the mammalian central nervous system, the mechanisms of coincidence detection described here may be widely used in many systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to evaluate NCAM function in the hippocampal mossy fiber system. Morphological studies demonstrated that fasciculation and laminar growth of mossy fibers were strongly affected, leading to innervation of CA3 pyramidal cells at ectopic sites, whereas individual mossy fiber boutons appeared normal. Electrophysiological recordings performed in hippocampal slice preparations revealed that both basal synaptic transmission and two forms of short-term plasticity, i.e., paired-pulse facilitation and frequency facilitation, were normal in mice lacking all forms of NCAM. However, long-term potentiation of glutamatergic excitatory synapses after brief trains of repetitive stimulation was abolished. Taken together, these results strongly suggest that in the hippocampal mossy fiber system, NCAM is essential both for correct axonal growth and synaptogenesis and for long-term changes in synaptic strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HML and HMR mating loci of Saccharomyces cerevisiae are bound in silent chromatin, which is assembled at the flanking E and I transcriptional silencers. The retrotransposon Ty5 preferentially integrates into regions of silent chromatin, and Ty5 insertions near the HMR-E silencer account for ≈2% of total transposition events. Most Ty5 insertions occur within 800 bp on either side of the autonomously replicating consensus sequence within HMR-E. Ty5 target preference is determined by silent chromatin, because integration near HMR-E is abolished in strains with silencer mutations that alleviate transcriptional repression. The recognition of specific DNA sequences per se does not direct integration, rather, it is the protein complex assembled at the silencers. As demonstrated here for Ty5, recognition of specific chromatin domains may be a general mechanism by which retrotransposons and retroviruses determine integration sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single mossy fiber input contains several release sites and is located on the proximal portion of the apical dendrite of CA3 neurons. It is, therefore, well suited to exert a strong influence on pyramidal cell excitability. Accordingly, the mossy fiber synapse has been referred to as a detonator or teacher synapse in autoassociative network models of the hippocampus. The very low firing rates of granule cells [Jung, M. W. & McNaughton, B. L. (1993) Hippocampus 3, 165–182], which give rise to the mossy fibers, raise the question of how the mossy fiber synapse temporally integrates synaptic activity. We have therefore addressed the frequency dependence of mossy fiber transmission and compared it to associational/commissural synapses in the CA3 region of the hippocampus. Paired pulse facilitation had a similar time course, but was 2-fold greater for mossy fiber synapses. Frequency facilitation, during which repetitive stimulation causes a reversible growth in synaptic transmission, was markedly different at the two synapses. At associational/commissural synapses facilitation occurred only at frequencies greater than once every 10 s and reached a magnitude of about 125% of control. At mossy fiber synapses, facilitation occurred at frequencies as low as once every 40 s and reached a magnitude of 6-fold. Frequency facilitation was dependent on a rise in intraterminal Ca2+ and activation of Ca2+/calmodulin-dependent kinase II, and was greatly reduced at synapses expressing mossy fiber long-term potentiation. These results indicate that the mossy fiber synapse is able to integrate granule cell spiking activity over a broad range of frequencies, and this dynamic range is substantially reduced by long-term potentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local translation of proteins in distal dendrites is thought to support synaptic structural plasticity. We have previously shown that metabotropic glutamate receptor (mGluR1) stimulation initiates a phosphorylation cascade, triggering rapid association of some mRNAs with translation machinery near synapses, and leading to protein synthesis. To determine the identity of these mRNAs, a cDNA library produced from distal nerve processes was used to screen synaptic polyribosome-associated mRNA. We identified mRNA for the fragile X mental retardation protein (FMRP) in these processes by use of synaptic subcellular fractions, termed synaptoneurosomes. We found that this mRNA associates with translational complexes in synaptoneurosomes within 1–2 min after mGluR1 stimulation of this preparation, and we observed increased expression of FMRP after mGluR1 stimulation. In addition, we found that FMRP is associated with polyribosomal complexes in these fractions. In vivo, we observed FMRP immunoreactivity in spines, dendrites, and somata of the developing rat brain, but not in nuclei or axons. We suggest that rapid production of FMRP near synapses in response to activation may be important for normal maturation of synaptic connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the identification and cloning of a 28-kDa polypeptide (p28) in Tetrahymena macronuclei that shares several features with the well studied heterochromatin-associated protein HP1 from Drosophila. Notably, like HP1, p28 contains both a chromodomain and a chromoshadow domain. p28 also shares features with linker histone H1, and like H1, p28 is multiply phosphorylated, at least in part, by a proline-directed, Cdc2-type kinase. As such, p28 is referred to as Hhp1p (for H1/HP1-like protein). Hhp1p is missing from transcriptionally silent micronuclei but is enriched in heterochromatin-like chromatin bodies that presumably comprise repressed chromatin in macronuclei. These findings shed light on the evolutionary conserved nature of heterochromatin in organisms ranging from ciliates to humans and provide further evidence that HP1-like proteins are not exclusively associated with permanently silent chromosomal domains. Our data support a view that members of this family also associate with repressed states of euchromatin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural degeneration is one of the clinical manifestations of ataxia–telangiectasia, a disorder caused by mutations in the Atm protein kinase gene. However, neural degeneration was not detected with general purpose light microscopic methods in previous studies using several different lines of mice with disrupted Atm genes. Here, we show electron microscopic evidence of degeneration of several different types of neurons in the cerebellar cortex of 2-month-old Atm knockout mice, which is accompanied by glial activation, deterioration of neuropil structure, and both pre- and postsynaptic degeneration. These findings are similar to those in patients with ataxia–telangiectasia, indicating that Atm knockout mice are a useful model to elucidate the mechanisms underlying neurodegeneration in this condition and to develop and test strategies to palliate and prevent the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal pyramidal neurons often fire in bursts of action potentials with short interspike intervals (2–10 msec). These high-frequency bursts may play a critical role in the functional behavior of hippocampal neurons, but synaptic plasticity at such short times has not been carefully studied. To study synaptic modulation at very short time intervals, we applied pairs of stimuli with interpulse intervals ranging from 7 to 50 msec to CA1 synapses isolated by the method of minimal stimulation in hippocampal slices. We have identified three components of short-term paired-pulse modulation, including (i) a form of synaptic depression manifested after a prior exocytotic event, (ii) a form of synaptic depression that does not depend on a prior exocytotic event and that we postulate is based on inactivation of presynaptic N-type Ca2+ channels, and (iii) a dependence of paired-pulse facilitation on the exocytotic history of the synapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated sodium channels perform critical roles for electrical signaling in the nervous system by generating action potentials in axons and in dendrites. At least 10 genes encode sodium channels in mammals, but specific physiological roles that distinguish each of these isoforms are not known. One possibility is that each isoform is expressed in a restricted set of cell types or is targeted to a specific domain of a neuron or muscle cell. Using affinity-purified isoform-specific antibodies, we find that Nav1.6 is highly concentrated at nodes of Ranvier of both sensory and motor axons in the peripheral nervous system and at nodes in the central nervous system. The specificity of this antibody was also demonstrated with the Nav1.6-deficient mouse mutant strain med, whose nodes were negative for Nav1.6 immunostaining. Both the intensity of labeling and the failure of other isoform-specific antibodies to label nodes suggest that Nav1.6 is the predominant channel type in this structure. In the central nervous system, Nav1.6 is localized in unmyelinated axons in the retina and cerebellum and is strongly expressed in dendrites of cortical pyramidal cells and cerebellar Purkinje cells. Ultrastructural studies indicate that labeling in dendrites is both intracellular and on dendritic shaft membranes. Remarkably, Nav1.6 labeling was observed at both presynaptic and postsynaptic membranes in the cortex and cerebellum. Thus, a single sodium channel isoform is targeted to different neuronal domains and can influence both axonal conduction and synaptic responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By evoking changes in climbing fiber activity, movement errors are thought to modify synapses from parallel fibers onto Purkinje cells (pf*Pkj) so as to improve subsequent motor performance. Theoretical arguments suggest there is an intrinsic tradeoff, however, between motor adaptation and long-term storage. Assuming a baseline rate of motor errors is always present, then repeated performance of any learned movement will generate a series of climbing fiber-mediated corrections. By reshuffling the synaptic weights responsible for any given movement, such corrections will degrade the memories for other learned movements stored in overlapping sets of synapses. The present paper shows that long-term storage can be accomplished by a second site of plasticity at synapses from parallel fibers onto stellate/basket interneurons (pf*St/Bk). Plasticity at pf*St/Bk synapses can be insulated from ongoing fluctuations in climbing fiber activity by assuming that changes in pf*St/Bk synapses occur only after changes in pf*Pkj synapses have built up to a threshold level. Although climbing fiber-dependent plasticity at pf*Pkj synapses allows for the exploration of novel motor strategies in response to changing environmental conditions, plasticity at pf*St/Bk synapses transfers successful strategies to stable long-term storage. To quantify this hypothesis, both sites of plasticity are incorporated into a dynamical model of the cerebellar cortex and its interactions with the inferior olive. When used to simulate idealized motor conditioning trials, the model predicts that plasticity develops first at pf*Pkj synapses, but with additional training is transferred to pf*St/Bk synapses for long-term storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-frequency thalamocortical oscillations that underlie drowsiness and slow-wave sleep depend on rhythmic inhibition of relay cells by neurons in the reticular nucleus (RTN) under the influence of corticothalamic fibers that branch to innervate RTN neurons and relay neurons. To generate oscillations, input to RTN predictably should be stronger so disynaptic inhibition of relay cells overcomes direct corticothalamic excitation. Amplitudes of excitatory postsynaptic conductances (EPSCs) evoked in RTN neurons by minimal stimulation of corticothalamic fibers were 2.4 times larger than in relay neurons, and quantal size of RTN EPSCs was 2.6 times greater. GluR4-receptor subunits labeled at corticothalamic synapses on RTN neurons outnumbered those on relay cells by 3.7 times, providing a basis for differences in synaptic strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methylation of tumor suppressor genes is a common feature of human cancer. The cyclin-dependent kinase inhibitor gene p16/Ink4A is hypermethylated in a wide range of malignant tissues and the p14/ARF gene located 20 kb upstream on chromosome 9p21 is also methylated in carcinomas. p14/ARF (ARF, alternative reading frame) does not inhibit the activities of cyclins or cyclin-dependent kinase complexes; however, the importance of the two gene products in the etiology of cancer resides in their involvement in two major cell cycle regulatory pathways: p53 and the retinoblastoma protein, Rb, respectively. Distinct first exons driven from separate promoters are spliced onto the common exons 2 and 3 and the resulting proteins are translated in different reading frames. Both genes are expressed in normal cells but can be alternatively or coordinately silenced when their CpG islands are hypermethylated. Herein, we examined the presence of methyl-CpG binding proteins associated with aberrantly methylated promoters, the distribution of acetylated histones H3 and H4 by chromatin immunoprecipitation assays, and the effect of chemical treatment with 5-aza-2′-deoxycytidine (5aza-dC) and trichostatin A on gene induction in colon cell lines by quantitative reverse transcriptase–PCR. We observed that the methyl-CpG binding protein MBD2 is targeted to methylated regulatory regions and excludes the acetylated histones H3 and H4, resulting in a localized inactive chromatin configuration. When methylated, the genes can be induced by 5aza-dC but the combined action of 5aza-dC and trichostatin A results in robust gene expression. Thus, methyl-CpG binding proteins and histone deacetylases appear to cooperate in vivo, with a dominant effect of DNA methylation toward histone acetylation, and repress expression of tumor suppressor genes hypermethylated in cancers.