3 resultados para SGD
em National Center for Biotechnology Information - NCBI
Resumo:
Upon the completion of the Saccharomyces cerevisiae genomic sequence in 1996 [Goffeau,A. et al. (1997) Nature, 387, 5], several creative and ambitious projects have been initiated to explore the functions of gene products or gene expression on a genome-wide scale. To help researchers take advantage of these projects, the Saccharomyces Genome Database (SGD) has created two new tools, Function Junction and Expression Connection. Together, the tools form a central resource for querying multiple large-scale analysis projects for data about individual genes. Function Junction provides information from diverse projects that shed light on the role a gene product plays in the cell, while Expression Connection delivers information produced by the ever-increasing number of microarray projects. WWW access to SGD is available at genome-www.stanford.edu/Saccharomyces/.
Resumo:
The Stanford Microarray Database (SMD) stores raw and normalized data from microarray experiments, and provides web interfaces for researchers to retrieve, analyze and visualize their data. The two immediate goals for SMD are to serve as a storage site for microarray data from ongoing research at Stanford University, and to facilitate the public dissemination of that data once published, or released by the researcher. Of paramount importance is the connection of microarray data with the biological data that pertains to the DNA deposited on the microarray (genes, clones etc.). SMD makes use of many public resources to connect expression information to the relevant biology, including SGD [Ball,C.A., Dolinski,K., Dwight,S.S., Harris,M.A., Issel-Tarver,L., Kasarskis,A., Scafe,C.R., Sherlock,G., Binkley,G., Jin,H. et al. (2000) Nucleic Acids Res., 28, 77–80], YPD and WormPD [Costanzo,M.C., Hogan,J.D., Cusick,M.E., Davis,B.P., Fancher,A.M., Hodges,P.E., Kondu,P., Lengieza,C., Lew-Smith,J.E., Lingner,C. et al. (2000) Nucleic Acids Res., 28, 73–76], Unigene [Wheeler,D.L., Chappey,C., Lash,A.E., Leipe,D.D., Madden,T.L., Schuler,G.D., Tatusova,T.A. and Rapp,B.A. (2000) Nucleic Acids Res., 28, 10–14], dbEST [Boguski,M.S., Lowe,T.M. and Tolstoshev,C.M. (1993) Nature Genet., 4, 332–333] and SWISS-PROT [Bairoch,A. and Apweiler,R. (2000) Nucleic Acids Res., 28, 45–48] and can be accessed at http://genome-www.stanford.edu/microarray.
C/EBPɛ mediates myeloid differentiation and is regulated by the CCAAT displacement protein (CDP/cut)
Resumo:
Neutrophils from CCAAT enhancer binding protein epsilon (C/EBPɛ) knockout mice have morphological and biochemical features similar to those observed in patients with an extremely rare congenital disorder called neutrophil-specific secondary granule deficiency (SGD). SGD is characterized by frequent bacterial infections attributed, in part, to the lack of neutrophil secondary granule proteins (SGP). A mutation that results in loss of functional C/EBPɛ activity has recently been described in an SGD patient, and has been postulated to be the cause of the disease in this patient. We have previously demonstrated that overexpression of CCAAT displacement protein (CDP/cut), a highly conserved transcriptional repressor of developmentally regulated genes, suppresses expression of SGP genes in 32Dcl3 cells. This phenotype resembles that observed in both C/EBPɛ−/− mice and in SGD patients. Based on these observations we investigated potential interactions between C/EBPɛ and CDP/cut during neutrophil maturation. In this study, we demonstrate that inducible expression of C/EBPɛ in 32Dcl3/tet cells results in granulocytic differentiation. Furthermore, Northern blot analysis of G-CSF-induced CDP/cut overexpressing 32Dcl3 cells revealed absence of C/EBPɛ mRNA. We therefore hypothesize that C/EBPɛ positively regulates SGP gene expression, and that C/EBPɛ is itself negatively regulated by CDP/cut during neutrophil maturation. We further demonstrate that the C/EBPɛ promoter is regulated by CDP/cut during myeloid differentiation.