3 resultados para SERUM TESTOSTERONE

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Müllerian Inhibiting Substance (MIS) expression is inversely proportional to the serum concentration of testosterone in males after birth and in vitro studies have shown that MIS can lower testosterone production by Leydig cells. Also, mice overexpressing MIS exhibited Leydig cell hypoplasia and lower levels of serum testosterone, but it is not clear whether this is a result of MIS affecting the development of Leydig cells or their capacity to produce testosterone. To examine the hypothesis that MIS treatment will result in decreased testosterone production by mature Leydig cells in vivo, we treated luteinizing hormone (LH)-stimulated adult male rats and mice with MIS and demonstrated that it can lead to a several-fold reduction in testosterone in serum and in testicular extracts. There was also a slight decrease in 17-OH-progesterone compared to the more significant decrease in testosterone, suggesting that MIS might be regulating the lyase activity of cytochrome P450c17 hydroxylase/lyase (Cyp17), but not its hydroxylase activity. Northern analysis showed that, in both MIS-treated rats and mice, the mRNA for Cyp17, which catalyzes the committed step in androgen synthesis, was down-regulated. In rats, the mRNA for cytochrome P450 side-chain cleavage (P450scc) was also down-regulated by MIS. This was not observed in mice, indicating that there might be species-specific regulation by MIS of the enzymes involved in the testosterone biosynthetic pathway. Our results show that MIS can be used in vivo to lower testosterone production by mature rodent Leydig cells and suggest that MIS-mediated down-regulation of the expression of Cyp17, and perhaps P450scc, contributes to that effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A cross-sectional survey was made in 56 exceptionally healthy males, ranging in age from 20 to 84 years. Measurements were made of selected steroidal components and peptidic hormones in blood serum, and cognitive and physical tests were performed. Of those blood serum variables that gave highly significant negative correlations with age (r > −0.6), bioavailable testosterone (BT), dehydroepiandrosterone sulfate (DHEAS), and the ratio of insulin-like growth factor 1 (IGF-1) to growth hormone (GH) showed a stepwise pattern of age-related changes most closely resembling those of the age steps themselves. Of these, BT correlated best with significantly age-correlated cognitive and physical measures. Because DHEAS correlated well with BT and considerably less well than BT with the cognitive and physical measures, it seems likely that BT and/or substances to which BT gives rise in tissues play a more direct role in whatever processes are rate-limiting in the functions measured and that DHEAS relates more indirectly to these functions. The high correlation of IGF-1/GH with age, its relatively low correlation with BT, and the patterns of correlations of IGF-1/GH and BT with significantly age-correlated cognitive and physical measures suggest that the GH–IGF-1 axis and BT play independent roles in affecting these functions. Serial determinations made after oral ingestion of pregnenolone and data from the literature suggest there is interdependence of steroid metabolic systems with those operational in control of interrelations in the GH–IGF-1 axis. Longitudinal concurrent measurements of serum levels of BT, DHEAS, and IGF-1/GH together with detailed studies of their correlations with age-correlated functional measures may be useful in detecting early age-related dysregulations and may be helpful in devising ameliorative approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice, homozygous for disrupted ganglioside GM2/GD2 synthase (EC 2.4.1.94) gene and lacking all complex gangliosides, do not display any major neurologic abnormalities. Further examination of these mutant mice, however, revealed that the males were sterile and aspermatogenic. In the seminiferous tubules of the mutant mice, a number of multinuclear giant cells and vacuolated Sertoli cells were observed. The levels of testosterone in the serum of these mice were very low, although testosterone production equaled that produced in wild-type mice. Testosterone was found to be accumulated in interstitial Leydig cells, and intratesticularly injected testosterone was poorly drained in seminiferous fluid in the mutant mice. These results suggested that complex gangliosides are essential in the transport of testosterone to the seminiferous tubules and bloodstream from Leydig cells. Our results provide insights into roles of gangliosides in vivo.