5 resultados para SAW transducers
em National Center for Biotechnology Information - NCBI
Resumo:
The assumption that genes encoding tyrosine kinase receptors could play a role in human cancers has been confirmed by the identification of oncogenic mutations in the kinase domain of RET and KIT. Recently, homologous residues were found mutated in MET, in papillary renal carcinomas (PRCs). The link coupling these genetic lesions to cellular transformation is still unclear. METPRC mutations result in increased kinase activity and—in some instances, i.e., M1250T substitution—in changes in substrate specificity. A direct correlation occurs between the transforming potential of METPRC mutants and their ability to constitutively associate with signal transducers through two phosphorylated tyrosines (Y1349VHVNATY1356VNV) located in the receptor tail. Substitution of these “docking tyrosines” with phenylalanines leaves unaffected the altered properties of the kinase but abrogates transformation and invasiveness in vitro. Uncoupling the receptor from signal transducers with a tyrosine-phosphorylated peptide derivative (YpVNV) inhibits invasive growth induced by METPRC mutants. These data indicate that constitutive receptor coupling to downstream signal transducers is a key mechanism in neoplastic transformation driven by mutated MET and suggest a therapeutic strategy to target neoplastic diseases associated with this oncogene.
Resumo:
Signal transducers and activators of transcription (STAT)-induced STAT inhibitor-1 [SSI-1; also known as suppressor of cytokine signaling-1 (SOCS-1)] was identified as a negative feedback regulator of Janus kinase-STAT signaling. We previously generated mice lacking the SSI-1 gene (SSI-1 −/−) and showed that thymocytes and splenocytes in SSI-1 −/− mice underwent accelerated apoptosis. In this paper, we show that murine embryonic fibroblasts lacking the SSI-1 gene are more sensitive than their littermate controls to tumor necrosis factor-α (TNF-α)-induced cell death. In addition, L929 cells forced to express SSI-1 (L929/SSI-1), but not SSI-3 or SOCS-5, are resistant to TNF-α-induced cell death. Furthermore L929/SSI-1 cells treated with TNF-α sustain the activation of p38 mitogen-activated protein (MAP) kinase. In contrast, SSI-1 −/− murine embryonic fibroblasts treated with TNF-α show hardly any activation of p38 MAP kinase. These findings suggest that SSI-1 suppresses TNF-α-induced cell death, which is mediated by p38 MAP kinase signaling.
Resumo:
The halobacterial phototaxis receptors sensory rhodopsin I and II (SRI, SRII) enable the bacteria to seek optimal light conditions for ion pumping by bacteriorhodopsin and/or halorhodopsin. The incoming signal is transferred across the plasma membrane by means of receptor-specific transducer proteins that bind tightly to their corresponding photoreceptors. To investigate the receptor/transducer interaction, advantage is taken of the observation that both SRI and SRII can function as proton pumps. SRI from Halobacterium salinarum, which triggers the positive phototaxis, the photophobic receptor SRII from Natronobacterium pharaonis (pSRII), as well as the mutant pSRII-F86D were expressed in Xenopus oocytes. Voltage-clamp studies confirm that SRI and pSRII function as light-driven, outwardly directed proton pumps with a much stronger voltage dependence than the ion pumps bacteriorhodopsin and halorhodopsin. Coexpression of SRI and pSRII-F86D with their corresponding transducers suppresses the proton transport, revealing a tight binding and specific interaction of the two proteins. These latter results may be exploited to further analyze the binding interaction of the photoreceptors with their downstream effectors.
Resumo:
Staphylococcal enterotoxins (SE) stimulate T cells expressing the appropriate variable region beta chain of (V beta) T-cell receptors and have been implicated in the pathogenesis of several autoimmune diseases. Depending on costimulatory signals, SE induce either proliferation or anergy in T cells. In addition, SE can induce an interleukin-2 (IL-2) nonresponsive state and apoptosis. Here, we show that SE induce dynamic changes in the expression of and signal transduction through the IL-2 receptor (IL-2R) beta and gamma chains (IL-2R beta and IL-2R gamma) in human antigen-specific CD4+ T-cell lines. Thus, after 4 hr of exposure to SEA and SEB, the expression of IL-2R beta was down-regulated, IL-2R gamma was slightly up-regulated, while IL-2R alpha remained largely unaffected. The changes in the composition of IL-2Rs were accompanied by inhibition of IL-2-induced tyrosine phosphorylation of the Janus protein-tyrosine kinase 3 (Jak3) and signal transducers and activators of transcription called Stat3 and Stat5. In parallel experiments, IL-2-driven proliferation was inhibited significantly. After 16 hr of exposure to SE, the expression of IL-2R beta remained low, while that of IL2R alpha and IL2R gamma was further up-regulated, and ligand-induced tyrosine phosphorylation of Jak3 and Stat proteins was partly normalized. Yet, IL-2-driven proliferation remained profoundly inhibited, suggesting that signaling events other than Jak3/Stat activation had also been changed following SE stimulation. In conclusion, our data suggest that SE can modulate IL-2R expression and signal transduction involving the Jak/Stat pathway in CD4+ T-cell lines.
Resumo:
Ciliary neurotrophic factor, oncostatin M, leukemia-inhibitory factor, and interleukin 6 are related cytokines that initiate signaling by homodimerizing the signal-transducing receptor component gp130 or by heterodimerizing gp130 with a gp130-related receptor component. Receptor dimerization in turn activates receptor-associated kinases of the Jak/Tyk family, resulting in the rapid tyrosine phosphorylation of several intracellular proteins, including those of two members of the signal transducers and activators of transcription (STAT) family--STAT1 and STAT3. Here we show that all cytokines that utilize gp130 sequentially induce two distinct forms of STAT3 in all responding cells examined, with the two forms apparently differing because of a time-dependent secondary serine/threonine phosphorylation involving an H7-sensitive kinase. While both STAT3 forms bind DNA and translocate to the nucleus, the striking time-dependent progression from one form to the other implies other important functional differences between the two forms. Granulocyte colony-stimulating factor, which utilizes a receptor highly related to gp130, also induces these two forms of STAT3. In contrast to a number of other cytokines and growth factors, all cytokines using gp130 and related signal transducers consistently and preferentially induce the two forms of STAT3 as compared with STAT1; this characteristic STAT activation pattern is seen regardless of which Jak/Tyk kinases are used in a particular response, consistent with the notion that the receptor components themselves are the primary determinants of which STATs are activated.