6 resultados para S10 genome segment
em National Center for Biotechnology Information - NCBI
Resumo:
Reovirus genome segment S1 encodes protein σ1, which is the receptor binding protein, modulates tissue tropism, and specifies the nature of the antiviral immune response. It makes up less than 2% of reovirus particles and is synthesized in very small amounts in infected cells. Any antiviral strategy aimed at reducing specifically the expression of this genome segment should, in principle, reduce the infectivity of the virus. To test this hypothesis, we have assembled two hammer-head motif-containing ribozymes (Rzs) targeted to cleave at the conserved B and C domains of the reovirus s1 RNA. Protein-independent but Mg2+-dependent sequence-specific cleavage of s1 RNA was achieved by both the Rzs in trans. Cells that transiently express these Rzs, when challenged with reovirus, were protected against the cytopathic effects caused by the virus. This protection correlated with the specific intracellular reduction of s1 transcripts that was due to their cleavage by the Rzs. Rz-treated cells that were challenged with reovirus showed almost complete disappearance of protein σ1 without significantly altering the levels of the other reovirus structural proteins. Thus, Rzs, besides acting as antiviral agents, could be exploited as biological tools to delineate specific functions of target genes.
Resumo:
We have modified the infectious reovirus RNA system so as to generate a reovirus reverse genetics system. The system consists of (i) the plus strands of nine wild-type reovirus genome segments; (ii) transcripts of the genetically modified cDNA form of the tenth genome segment; and (iii) a cell line transformed so as to express the protein normally encoded by the tenth genome segment. In the work described here, we have generated a serotype 3 reovirus into the S2 double-stranded RNA genome segment of which the CAT gene has been cloned. The virus is stable, replicates in cells that have been transformed (so as to express the S2 gene product, protein σ2), and expresses high levels of CAT activity. This technology can be extended to members of the orbivirus and rotavirus genera. This technology provides a powerful system for basic studies of double-stranded RNA virus replication; a nonpathogenic viral vector that replicates to high titers and could be used for clinical applications; and a system for providing nonselectable viral variants (the result of mutations, insertions, and deletions) that could be valuable for the construction of viral vaccine strains against human and animal pathogens.
Resumo:
In cells simultaneously infected with any two of the three reovirus serotypes ST1, ST2, and ST3, up to 15% of the yields are intertypic reassortants that contain all possible combinations of parental genome segments. We have now found that not all genome segments in reassortants are wild type. In reassortants that possess more ST1 than ST3 genome segments, all ST1 genome segments appear to be wild type, but the incoming ST3 genome segments possess mutations that make them more similar to the ST1 genome segments that they replace. In reassortants resulting from crosses of the more distantly related ST3 and ST2 viruses that possess a majority of ST3 genome segments, all incoming ST2 genome segments are wild type, but the ST3 S4 genome segment possesses two mutations, G74 to A and G624 to A, that function as acceptance signals. Recognition of these signals has far-reaching implications for the construction of reoviruses with novel properties and functions.
Resumo:
Cosmids from the 1A3–1A10 region of the complete miniset were individually subcloned by using the vector M13 mp18. Sequences of each cosmid were assembled from about 400 DNA fragments generated from the ends of these phage subclones and merged into one 189-kb contig. About 160 ORFs identified by the CodonUse program were subjected to similarity searches. The biological functions of 80 ORFs could be assigned reliably by using the WIT and Magpie genome investigation tools. Eighty percent of these recognizable ORFs were organized in functional clusters, which simplified assignment decisions and increased the strength of the predictions. A set of 26 genes for cobalamin biosynthesis, genes for polyhydroxyalkanoic acid metabolism, DNA replication and recombination, and DNA gyrase were among those identified. Most of the ORFs lacking significant similarity with reference databases also were grouped. There are two large clusters of these ORFs, one located between 45 and 67 kb of the map, and the other between 150 and 183 kb. Nine of the loosely identified ORFs (of 15) of the first of these clusters match ORFs from phages or transposons. The other cluster also has four ORFs of possible phage origin.
Resumo:
Large conductance voltage- and Ca2+-dependent K+ (MaxiK) channels show sequence similarities to voltage-gated ion channels. They have a homologous S1-S6 region, but are unique at the N and C termini. At the C terminus, MaxiK channels have four additional hydrophobic regions (S7-S10) of unknown topology. At the N terminus, we have recently proposed a new model where MaxiK channels have an additional transmembrane region (S0) that confers β subunit regulation. Using transient expression of epitope tagged MaxiK channels, in vitro translation, functional, and “in vivo” reconstitution assays, we now show that MaxiK channels have seven transmembrane segments (S0-S6) at the N terminus and a S1-S6 region that folds in a similar way as in voltage-gated ion channels. Further, our results indicate that hydrophobic segments S9-S10 in the C terminus are cytoplasmic and unequivocally demonstrate that S0 forms an additional transmembrane segment leading to an exoplasmic N terminus.
Resumo:
We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines.