29 resultados para S,N,O ligands
em National Center for Biotechnology Information - NCBI
Resumo:
It is not known how human immunodeficiency virus type 1 (HIV-1)-derived antagonist peptides interfere with intracellular activation of cytotoxic T lymphocytes (CTL). We identified Gag epitope variants in HIV-1-infected patients that act as antagonists of CTL responses to unmutated epitopes. We then investigated the effect that presentation of each variant has on the early events of T cell receptor (TCR) signal transduction. We found that altered peptide ligands (APL) failed to induce phosphorylation of pp36, a crucial adaptor protein involved in TCR signal transduction. We further investigated the effect that simultaneous presentation of APL and native antigen at low, physiological, peptide concentrations (1 nM) has on TCR signal transduction, and we found that the presence of APL can completely inhibit induction of the protein tyrosine phosphorylation events of the TCR signal transduction cascade.
Resumo:
Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.
Resumo:
Recent data suggest that survival of resting, naïve T cells requires an interaction with self MHC molecules. From analysis of the class I MHC-restricted T cell receptor transgenic strain OT-I, we report a different response. Rather than merely surviving, these T cells proliferated slowly after transfer into T-depleted syngeneic hosts. This expansion required both T cell “space” and expression of normal levels of self class I MHC molecules. Furthermore, we demonstrate that during homeostatic expansion in a suitable environment, naïve phenotype (CD44low) OT-I T cells converted to memory phenotype (CD44med/high), despite the absence of foreign antigenic stimulation. On the other hand, cells undergoing homeostatic expansion did not acquire cytolytic effector function. The significance of these data for reactivity of T cells with self peptide/MHC ligands and the implications for normal and abnormal T cell homeostasis are discussed.
Resumo:
Myasthenia gravis (MG) is a T cell-regulated, antibody-mediated autoimmune disease. Two peptides representing sequences of the human acetylcholine receptor α-subunit, p195–212 and p259–271, previously were shown to stimulate the proliferation of peripheral blood lymphocytes of patients with MG and were found to be immunodominant T cell epitopes in SJL and BALB/c mice, respectively. Single amino acid-substituted analogs of p195–212 and p259–271, as well as a dual analog composed of the tandemly arranged two single analogs, were shown to inhibit, in vitro and in vivo, MG-associated autoimmune responses. Stimulation of T cells through the antigen-specific T cell receptor activates tyrosine kinases and phospholipase C (PLC). Therefore, in attempts to understand the mechanism of action of the analogs, we first examined whether the myasthenogenic peptides trigger tyrosine phosphorylation and activation of phospholipase C. For that purpose, we measured generation of inositol phosphates and tyrosine phosphorylation of PLC after stimulation of the p195–212- and p259–271-specific T cell lines with these myasthenogenic peptides. Both myasthenogenic peptides stimulated generation of inositol phosphates as well as tyrosine phosphorylation of PLC. However, the single and dual analogs, although inducing tyrosine phosphorylation of PLC, could not induce PLC activity. Furthermore, the single and dual analogs inhibited the induced PLC activity whereas they could not inhibit tyrosine phosphorylation of PLC that was caused by the myasthenogenic peptides. Thus, the altered peptides and the dual analog act as partial agonists. The down-regulation of PLC activity by the analogs may account for their capacity to inhibit in vitro MG-associated T cell responses.
Resumo:
CB1, a cannabinoid receptor enriched in neuronal tissue, was found in high concentration in retinas of rhesus monkey, mouse, rat, chick, goldfish, and tiger salamander by using a subtype-specific polyclonal antibody. Immunolabeling was detected in the two synaptic layers of the retina, the inner and outer plexiform layers, of all six species examined. In the outer plexiform layer, CB1 was located in and/or on cone pedicles and rod spherules. Labeling was detected in some amacrine cells of all species and in the ganglion cells and ganglion cell axons of all species except fish. In addition, sparse labeling was found in the inner and/or outer segments of the photoreceptors of monkey, mouse, rat, and chick. Using GC/MS to detect possible endogenous cannabinoids, we found 3 nmol of 2-arachidonylglycerol per g of tissue, but no anandamide was detectable. Cannabinoid receptor agonists induced a dramatic reduction in the amplitude of voltage-gated L-type calcium channel currents in identified retinal bipolar cells. The presence and distribution of the CB1 receptor, the large amounts of 2-arachidonylglycerol found, and the effects of cannabinoids on calcium channel activity in bipolar cells suggest a substantive role for an endogenous cannabinoid signaling system in retinal physiology, and perhaps vision in general.
Resumo:
The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.
Resumo:
Fibroblast growth factors (FGFs) effect cellular responses by binding to FGF receptors (FGFRs). FGF bound to extracellular domains on the FGFR in the presence of heparin activates the cytoplasmic receptor tyrosine kinase through autophosphorylation. We have crystallized a complex between human FGF1 and a two-domain extracellular fragment of human FGFR2. The crystal structure, determined by multiwavelength anomalous diffraction analysis of the selenomethionyl protein, is a dimeric assemblage of 1:1 ligand:receptor complexes. FGF is bound at the junction between the two domains of one FGFR, and two such units are associated through receptor:receptor and secondary ligand:receptor interfaces. Sulfate ion positions appear to mark the course of heparin binding between FGF molecules through a basic region on receptor D2 domains. This dimeric assemblage provides a structural mechanism for FGF signal transduction.
Resumo:
A general strategy is described for improving the binding properties of small-molecule ligands to protein targets. A bifunctional molecule is created by chemically linking a ligand of interest to another small molecule that binds tightly to a second protein. When the ligand of interest is presented to the target protein by the second protein, additional protein–protein interactions outside of the ligand-binding sites serve either to increase or decrease the affinity of the binding event. We have applied this approach to an intractable target, the SH2 domain, and demonstrate a 3-fold enhancement over the natural peptide. This approach provides a way to modulate the potency and specificity of biologically active compounds.
Resumo:
The immunodominant, CD8+ cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein–Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide—RSKFRQIV—located in a serine/threonine kinase and a bacterial peptide—RRKYKQII—located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted αβ TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8+ CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.
Resumo:
Aβ1–42 is a self-associating peptide whose neurotoxic derivatives are thought to play a role in Alzheimer’s pathogenesis. Neurotoxicity of amyloid β protein (Aβ) has been attributed to its fibrillar forms, but experiments presented here characterize neurotoxins that assemble when fibril formation is inhibited. These neurotoxins comprise small diffusible Aβ oligomers (referred to as ADDLs, for Aβ-derived diffusible ligands), which were found to kill mature neurons in organotypic central nervous system cultures at nanomolar concentrations. At cell surfaces, ADDLs bound to trypsin-sensitive sites and surface-derived tryptic peptides blocked binding and afforded neuroprotection. Germ-line knockout of Fyn, a protein tyrosine kinase linked to apoptosis and elevated in Alzheimer’s disease, also was neuroprotective. Remarkably, neurological dysfunction evoked by ADDLs occurred well in advance of cellular degeneration. Without lag, and despite retention of evoked action potentials, ADDLs inhibited hippocampal long-term potentiation, indicating an immediate impact on signal transduction. We hypothesize that impaired synaptic plasticity and associated memory dysfunction during early stage Alzheimer’s disease and severe cellular degeneration and dementia during end stage could be caused by the biphasic impact of Aβ-derived diffusible ligands acting upon particular neural signal transduction pathways.
Resumo:
Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.
Resumo:
Cellular immunity is mediated by the interaction of an αβ T cell receptor (TCR) with a peptide presented within the context of a major histocompatibility complex (MHC) molecule. Alloreactive T cells have αβ TCRs that can recognize both self- and foreign peptide–MHC (pMHC) complexes, implying that the TCR has significant complementarity with different pMHC. To characterize the molecular basis for alloreactive TCR recognition of pMHC, we have produced a soluble, recombinant form of an alloreactive αβ T cell receptor in Drosophila melanogaster cells. This recombinant TCR, 2C, is expressed as a correctly paired αβ heterodimer, with the chains covalently connected via a disulfide bond in the C-terminal region. The native conformation of the 2C TCR was probed by surface plasmon resonance (SPR) analysis by using conformation-specific monoclonal antibodies, as well as syngeneic and allogeneic pMHC ligands. The 2C interaction with H-2Kb-dEV8, H-2Kbm3-dEV8, H-2Kb-SIYR, and H-2Ld-p2Ca spans a range of affinities from Kd = 10−4 to 10−6M for the syngeneic (H-2Kb) and allogeneic (H-2Kbm3, H-2Ld) ligands. In general, the syngeneic ligands bind with weaker affinities than the allogeneic ligands, consistent with current threshold models of thymic selection and T cell activation. Crystallization of the 2C TCR required proteolytic trimming of the C-terminal residues of the α and β chains. X-ray quality crystals of complexes of 2C with H-2Kb-dEV8, H-2Kbm3-dEV8 and H-2Kb-SIYR have been grown.
Resumo:
The current paper describes a line of cultured rat hepatoma cells (McA-RH7777 cells) that mimics the behavior of rat liver by producing an excess of mRNA for sterol regulatory element-binding protein 1c (SREBP-1c) as opposed to SREBP-1a. These two transcripts are derived from a single gene by use of alternative promoters that are separated by many kilobases in the genome. The high level of SREBP-1c mRNA is abolished when cholesterol synthesis is blocked by compactin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase that inhibits cholesterol synthesis. Levels of SREBP-1c mRNA are restored by mevalonate, the product of the HMG CoA reductase reaction, and by ligands for the nuclear hormone receptor LXR, including 22(R)-hydroxycholesterol and T0901317. These data suggest that transcription of the SREBP-1c gene in hepatocytes requires tonic activation of LXR by an oxysterol intermediate in the cholesterol biosynthetic pathway. Reduction of this intermediate lowers SREBP-1c levels, and this in turn is predicted to lower the rates of fatty acid biosynthesis in liver.
Structural analysis of the binding modes of minor groove ligands comprised of disubstituted benzenes
Resumo:
Two-dimensional homonuclear NMR was used to characterize synthetic DNA minor groove-binding ligands in complexes with oligonucleotides containing three different A-T binding sites. The three ligands studied have a C2 axis of symmetry and have the same general structural motif of a central para-substituted benzene ring flanked by two meta-substituted rings, giving the molecules a crescent shape. As with other ligands of this shape, specificity seems to arise from a tight fit in the narrow minor groove of the preferred A-T-rich sequences. We found that these ligands slide between binding subsites, behavior attributed to the fact that all of the amide protons in the ligand backbone cannot hydrogen bond to the minor groove simultaneously.
Resumo:
Sephadex-binding RNA ligands (aptamers) were obtained through in vitro selection. They could be classified into two groups based on their consensus sequences and the aptamers from both groups showed strong binding to Sephadex G-100. One of the highest affinity aptamers, D8, was chosen for further characterization. Aptamer D8 bound to dextran B512, the soluble base material of Sephadex, but not to isomaltose, isomaltotriose and isomaltotetraose, suggesting that its optimal binding site might consist of more than four glucose residues linked via α-1,6 linkages. The aptamer was very specific to the Sephadex matrix and did not bind appreciably to other supporting matrices, such as Sepharose, Sephacryl, cellulose or pustulan. Using Sephadex G-100, the aptamer could be purified from a complex mixture of cellular RNA, giving an enrichment of at least 60 000-fold, compared with a non-specific control RNA. These RNA aptamers can be used as affinity tags for RNAs or RNA subunits of ribonucleoproteins to allow rapid purification from complex mixtures of RNA using only Sephadex.