9 resultados para Ruthenium (II) Complexes

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated subcomplexes of photosystem II from spinach (CP47RC), composed of D1, D2, cytochrome b559, CP47, and a number of hydrophobic small subunits but devoid of CP43 and the extrinsic proteins of the oxygen-evolving complex, were shown to reconstitute the Mn4Ca1Clx cluster of the water-splitting system and to evolve oxygen. The photoactivation process in CP47RC dimers proceeds by the same two-step mechanism as observed in PSII membranes and exhibits the same stoichiometry for Mn2+, but with a 10-fold lower affinity for Ca2+ and an increased susceptibility to photodamage. After the lower Ca2+ affinity and the 10-fold smaller absorption cross-section for photons in CP47 dimers is taken into account, the intrinsic rate constant for the rate-limiting calcium-dependent dark step is indistinguishable for the two systems. The monomeric form of CP47RC also showed capacity to photoactivate and catalyze water oxidation, but with lower activity than the dimeric form and increased susceptibility to photodamage. After optimization of the various parameters affecting the photoactivation process in dimeric CP47RC subcores, 18% of the complexes were functionally reconstituted and the quantum efficiency for oxygen production by reactivated centers approached 96% of that observed for reconstituted photosystem II-enriched membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several unanswered questions in T cell immunobiology relating to intracellular processing or in vivo antigen presentation could be approached if convenient, specific, and sensitive reagents were available for detecting the peptide–major histocompatibility complex (MHC) class I or class II ligands recognized by αβ T cell receptors. For this reason, we have developed a method using homogeneously loaded peptide–MHC class II complexes to generate and select specific mAb reactive with these structures using hen egg lysozyme (HEL) and I-Ak as a model system. mAbs specific for either HEL-(46–61)–Ak or HEL-(116–129)–Ak have been isolated. They cross-react with a small subset of I-Ak molecules loaded with self peptides but can nonetheless be used for flow cytometry, immunoprecipitation, Western blotting, and intracellular immunofluorescence to detect specific HEL peptide–MHC class II complexes formed by either peptide exposure or natural processing of native HEL. An example of the utility of these reagents is provided herein by using one of the anti-HEL-(46–61)–Ak specific mAbs to visualize intracellular compartments where I-Ak is loaded with HEL-derived peptides early after antigen administration. Other uses, especially for in vivo tracking of specific ligand-bearing antigen-presenting cells, are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4+ T cells recognize major histocompatibility complex (MHC) class II-bound peptides that are primarily obtained from extracellular sources. Endogenously synthesized proteins that readily enter the MHC class I presentation pathway are generally excluded from the MHC class II presentation pathway. We show here that endogenously synthesized ovalbumin or hen egg lysozyme can be efficiently presented as peptide-MHC class II complexes when they are expressed as fusion proteins with the invariant chain (Ii). Similar to the wild-type Ii, the Ii-antigen fusion proteins were associated intracellularly with MHC molecules. Most efficient expression of endogenous peptide-MHC complex was obtained with fusion proteins that contained the endosomal targeting signal within the N-terminal cytoplasmic Ii residues but did not require the luminal residues of Ii that are known to bind MHC molecules. These results suggest that signals within the Ii can allow endogenously synthesized proteins to efficiently enter the MHC class II presentation pathway. They also suggest a strategy for identifying unknown antigens presented by MHC class II molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have established that antigen presenting cells (APC) expressing major histocompatibility complex class II beta chains with truncated cytoplasmic domains are impaired in their capacity to activate T cells. While it had been widely accepted that this impairment is due to a defect in class II cytoplasmic domain-dependent signal transduction, we recently generated transgenic mice expressing only truncated class II beta chains, and functional analyses of APC from these mice revealed signaling-independent defects in antigen presentation. Here, we demonstrate that T cells primed on such transgenic APC respond better to stimulation by APC expressing truncated beta chains than by wild-type APC. This finding suggests that APC expressing truncated class II beta chains are not inherently defective in their antigen presenting capacity but, rather, may differ from wild-type APC in the peptide antigens that they present. Indeed, analysis of the peptides bound to class II molecules isolated from normal and transgenic spleen cells revealed clear differences. Most notably, the level of class II-associated invariant chain-derived peptides (CLIP) is significantly reduced in cells expressing only truncated beta chains. Prior studies have established that CLIP and antigenic peptides compete for binding to class II molecules. Thus, our results suggest that the cytoplasmic domain of the class II beta chain affects antigen presentation by influencing the level of CLIP/class II complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photosystem II is a reaction center protein complex located in photosynthetic membranes of plants, algae, and cyanobacteria. Using light energy, photosystem II catalyzes the oxidation of water and the reduction of plastoquinone, resulting in the release of molecular oxygen. A key component of photosystem II is cytochrome b559, a membrane-embedded heme protein with an unknown function. The cytochrome is unusual in that a heme links two separate polypeptide subunits, α and β, either as a heterodimer (αβ) or as two homodimers (α2 and β2). To determine the structural organization of cytochrome b559 in the membrane, we used site-directed mutagenesis to fuse the coding regions of the two respective genes in the cyanobacterium Synechocystis sp. PCC 6803. In this construction, the C terminus of the α subunit (9 kDa) is attached to the N terminus of the β subunit (5 kDa) to form a 14-kDa αβ fusion protein that is predicted to have two membrane-spanning α-helices with antiparallel orientations. Cells containing the αβ fusion protein grow photoautotrophically and assemble functional photosystem II complexes. Optical spectroscopy shows that the αβ fusion protein binds heme and is incorporated into photosystem II. These data support a structural model of cytochrome b559 in which one heme is coordinated to an α2 homodimer and a second heme is coordinated to a β2 homodimer. In this model, each photosystem II complex contains two cytochrome b559 hemes, with the α2 heme located near the stromal side of the membrane and the β2 heme located near the lumenal side.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Invariant chain (Ii) is an intracellular type II transmembrane glycoprotein that is associated with major histocompatibility complex class II molecules during biosynthesis. Ii exists in two alternatively spliced forms, p31 and p41. Both p31 and p41 facilitate folding of class II molecules, promote egress from the endoplasmic reticulum, prevent premature peptide binding, and enhance localization to proteolytic endosomal compartments that are thought to be the sites for Ii degradation, antigen processing, and class II-peptide association. In spite of the dramatic and apparently equivalent effects that p31 and p41 have on class II biosynthesis, the ability of invariant chain to enhance antigen presentation to T cells is mostly restricted to p41. Here we show that degradation of Ii leads to the generation of a 12-kDa amino-terminal fragment that in p41-positive, but not in p31-positive, cells remains associated with class II molecules for an extended time. Interestingly, we find that coexpression of the two isoforms results in a change in the pattern of p31 degradation such that endosomal processing of p31 also leads to extended association of a similar 12-kDa fragment with class II molecules. These data raise the possibility that p41 may have the ability to impart its pattern of proteolytic processing on p31 molecules expressed in the same cells. This would enable a small number of p41 molecules to modify the post-translational transport and/or processing of an entire cohort of class II-Ii complexes in a manner that could account for the unique ability of p41 to enhance antigen presentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some intermediates in the reduction of O2 to water by cytochrome-c oxidase have been characterized by optical, Raman, and magnetic circular dichroism spectroscopy. The so-called "peroxy" (P) and "ferryl" (F) forms of the enzyme, which have been considered to be intermediates of the oxygen reaction, can be generated when the oxidized enzyme reacts with H2O2, or when the two-electron reduced ("CO mixed-valence") enzyme reacts with O2. The structures as well as the overall redox states of P and F have recently been controversial. We show here, using tris(2,2'-bipyridyl)ruthenium(II) as a photoinducible reductant, that one-electron reduction of P yields F, and that one-electron reduction of F yields the oxidized enzyme. This confirms that the overall redox states of P and F differ from the oxidized enzyme by two and one electron equivalents, respectively. The structures of the P and F states are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A general method is described for constructing a helical oligoproline assembly having a spatially ordered array of functional sites protruding from a proline-II helix. Three different redox-active carboxylic acids were coupled to the side chain of cis-4-amino-L-proline. These redox modules were incorporated through solid-phase peptide synthesis into a 13-residue helical oligoproline assembly bearing in linear array a phenothiazine electron donor, a tris(bipyridine)ruthenium(II) chromophore, and an anthraquinone electron acceptor. Upon transient 460-nm irradiation in acetonitrile, this peptide triad formed with 53% efficiency an excited state containing a phenothiazine radical cation and an anthraquinone radical anion. This light-induced redox-separated state had a lifetime of 175 ns and stored 1.65 eV of energy.