4 resultados para Rotors -- Balancing

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In filamentous fungi, het loci (for heterokaryon incompatibility) are believed to regulate self/nonself-recognition during vegetative growth. As filamentous fungi grow, hyphal fusion occurs within an individual colony to form a network. Hyphal fusion can occur also between different individuals to form a heterokaryon, in which genetically distinct nuclei occupy a common cytoplasm. However, heterokaryotic cells are viable only if the individuals involved have identical alleles at all het loci. One het locus, het-c, has been characterized at the molecular level in Neurospora crassa and encodes a glycine-rich protein. In an effort to understand the role of this locus in filamentous fungi, we chose to study its evolution by analyzing het-c sequence variability in species within Neurospora and related genera. We determined that the het-c locus was polymorphic in a field population of N. crassa with close to equal frequency of each of the three allelic types. Different species and even genera within the Sordariaceae shared het-c polymorphisms, indicating that these polymorphisms originated in an ancestral species. Finally, an analysis of the het-c specificity region shows a high occurrence of nonsynonymous substitution. The persistence of allelic lineages, the nearly equal allelic distribution within populations, and the high frequency of nonsynonymous substitutions in the het-c specificity region suggest that balancing selection has operated to maintain allelic diversity at het-c. Het-c shares this particular evolutionary characteristic of departing from neutrality with other self/nonself-recognition systems such as major histocompatibility complex loci in mammals and the S (self-incompatibility) locus in angiosperms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genotypic proportions for major histocompatibility complex loci, HLA-A and HLA-B, of progeny in families in 23 South Amerindian tribes in which segregation for homozygotes and heterozygotes could occur are examined. Overall, there is a large deficiency of homozygotes compared with Mendelian expectations (for HLA-A, 114 observed and 155.50 expected and for HLA-B 110 observed and 144.75 expected), consistent with strong balancing selection favoring heterozygotes. There is no evidence that these deficiencies were associated with particular alleles or with the age of the individuals sampled. When these families were divided into four mating types, there was strong selection against homozygotes, averaging 0.462 for three of the mating types over the two loci. For the other mating type in which the female parent is homozygous and shares one allele with the heterozygous male parent, there was no evidence of selection against homozygotes. A theoretical model incorporating these findings surprisingly does not result in a stable polymorphism for two alleles but does result in an excess of heterozygotes and a minimum fitness at intermediate allele frequencies. However, for more than two alleles, balancing selection does occur and the model approaches the qualities of the symmetrical heterozygote advantage model as the number of alleles increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional termination of the GAL10 gene in Saccharomyces cerevisiae depends on the efficiency of polyadenylation. Either cis mutations in the poly(A) signal or trans mutations of mRNA 3′ end cleavage factors result in GAL10 read-through transcripts into the adjacent GAL7 gene and inactivation (occlusion) of the GAL7 promoter. Herein, we present a molecular explanation of this transcriptional interference phenomenon. In vivo footprinting data reveal that GAL7 promoter occlusion is associated with the displacement of Gal4p transcription factors from the promoter. Interestingly, overexpression of Gal4p restores promoter occupancy, activates GAL7 expression, and rescues growth on the otherwise toxic galactose substrate. Our data therefore demonstrate a precise balance between transcriptional interference and initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunological self-tolerance is ensured by eliminating or inhibiting self-reactive lymphocyte clones, creating physical or functional holes in the B- and T-lymphocyte antigen receptor repertoires. The nature and size of these gaps in our immune defenses must be balanced against the necessity of mounting rapid immune responses to an everchanging array of foreign pathogens. To achieve this balance, only a fraction of particularly hazardous self-reactive clones appears to be physically eliminated from the repertoire in a manner that fully prevents their recruitment into an antimicrobial immune response. Many self-reactive cells are retained with a variety of conditional and potentially flexible restraints: (i) their ability to be triggered by antigen is diminished by mechanisms that tune down signaling by their antigen receptors, (ii) their ability to carry out inflammatory effector functions can be inhibited, and (iii) their capacity to migrate and persist is constrained. This balance between tolerance and immunity can be shifted, altering susceptibility to autoimmune disease and to infection by genetic or environmental differences either in the way antigens are presented, in the tuning molecules that adjust triggering set points for lymphocyte responses to antigen, or in the effector molecules that eliminate, retain, or expand particular clones.