2 resultados para Rotarod Performance Test
em National Center for Biotechnology Information - NCBI
Resumo:
Identification of individual major genes affecting quantitative traits in livestock species has been limited to date. By using a candidate gene approach and a divergent breed cross involving the Chinese Meishan pig, we have shown that a specific allele of the estrogen receptor (ER) locus is associated with increased litter size. Female pigs from synthetic lines with a 50% Meishan background that were homozygous for this beneficial allele produced 2.3 more pigs in first parities and 1.5 more pigs averaged over all parities than females from the same synthetic lines and homozygous for the undesirable allele. This beneficial ER allele was also found in pigs with Large White breed ancestory. Analysis of females with Large White breed background showed an advantage for females homozygous for the beneficial allele as compared to females homozygous for the other allele of more than 1 total pig born. Analyses of growth performance test records detected no significant unfavorable associations of the beneficial allele with growth and developmental traits. Mapping of the ER gene demonstrated that the closest known genes or markers were 3 centimorgans from ER. To our knowledge, one of these, superoxide dismutase gene (SOD2), was mapped for the first time in the pig. Analysis of ER and these linked markers indicated that ER is the best predictor of litter size differences. Introgression of the beneficial allele into commercial pig breeding lines, in which the allele was not present, and marker-assisted selection for the beneficial allele in lines with Meishan and Large White background have begun.
Resumo:
The relationship between brain activity and reading performance was examined to test the hypothesis that dyslexia involves a deficit in a specific visual pathway known as the magnocellular (M) pathway. Functional magnetic resonance imaging was used to measure brain activity in dyslexic and control subjects in conditions designed to preferentially stimulate the M pathway. Dyslexics showed reduced activity compared with controls both in the primary visual cortex and in a secondary cortical visual area (MT+) that is believed to receive a strong M pathway input. Most importantly, significant correlations were found between individual differences in reading rate and brain activity. These results support the hypothesis for an M pathway abnormality in dyslexia and imply a strong relationship between the integrity of the M pathway and reading ability.