2 resultados para Rosa officinalis
em National Center for Biotechnology Information - NCBI
Resumo:
Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 μmol mol−1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low.
Resumo:
Proliferation of dispersed plant cells in culture is strictly dependent on cell density, and cells in a low-density culture can only grow in the presence of conditioned medium (CM). No known plant hormones have been able to substitute for CM. To quantify the mitogenic activity of CM, we examined conditions for the assay system using mechanically dispersed mesophyll cells of Asparagus officinalis L. and established a highly sensitive bioassay method. By use of this method, the mitogenic activity of CM prepared from asparagus cells was characterized: it was heat-stable, susceptible to pronase digestion, and resistant to glycosidase treatment. On the basis of these results, the mitogenic activity in CM was purified 10(7)-fold by column chromatography, and two factors named phytosulfokine-alpha and -beta (PSK-alpha and PSK-beta) were obtained. By amino acid sequence analysis and mass spectrometry, the structures of these two factors were determined to be sulfated pentapeptide (H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH) and sulfated tetrapeptide (H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH). PSK-alpha and PSK-beta were prepared by chemical synthesis and enzymatic sulfation. The synthetic peptides exhibited the same activity as the natural factors, confirming the structure for PSK-alpha and PSK-beta mentioned above. This is the first elucidation of the structure of a conditioned medium factor required for the growth of low-density plant cell cultures.