21 resultados para Root development

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A monogenic dominant mutant of white clover (Trifolium repens L.), designated Mortal, which is defective in the formation of adventitious nodal roots, is described. Mortal plants grown at temperatures ranging from 10 to 25°C do not initiate nodal root primordium development. However, all other aspects of plant development are normal, including the formation of lateral roots and wound-induced adventitious roots. In some genetic backgrounds, the Mortal mutation has a temperature-sensitive conditional phenotype. Mortal plants shifted from growing conditions of 20 to 30°C for 2 to 3 d form nodal root meristems. However, new nodes that develop after plants are returned to 20°C exhibit the mutant phenotype. The capacity to form nodal roots on cuttings placed in water is also influenced by the genetic background of the Mortal mutation. Genetic analysis established that the physiological reversion of Mortal to nodal root formation is controlled by at least two separate dominant genetic loci, one for Nodal water response (Now) and one for Nodal temperature response (Not); the Now locus has a dominant epistatic interaction with the Not locus. The conditional nature of Mortal should provide opportunities for the identification of genetic and physiological mechanisms that influence the development of nodal roots.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Root development is extremely sensitive to variations in nutrient supply, but the mechanisms are poorly understood. We have investigated the processes by which nitrate (NO3−), depending on its availability and distribution, can have both positive and negative effects on the development and growth of lateral roots. When Arabidopsis roots were exposed to a locally concentrated supply of NO3− there was no increase in lateral root numbers within the NO3−-rich zone, but there was a localized 2-fold increase in the mean rate of lateral root elongation, which was attributable to a corresponding increase in the rate of cell production in the lateral root meristem. Localized applications of other N sources did not stimulate lateral root elongation, consistent with previous evidence that the NO3− ion is acting as a signal rather than a nutrient. The axr4 auxin-resistant mutant was insensitive to the stimulatory effect of NO3−, suggesting an overlap between the NO3− and auxin response pathways. High rates of NO3− supply to the roots had a systemic inhibitory effect on lateral root development that acted specifically at the stage when the laterals had just emerged from the primary root, apparently delaying final activation of the lateral root meristem. A nitrate reductase-deficient mutant showed increased sensitivity to this systemic inhibitory effect, suggesting that tissue NO3− levels may play a role in generating the inhibitory signal. We present a model in which root branching is modulated by opposing signals from the plant’s internal N status and the external supply of NO3−.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts in Arabidopsis have allowed a nearly complete sampling of the MADS-box gene family from a single plant, something that was lacking in previous phylogenetic studies. To test the long-suspected parallel between the evolution of the MADS-box gene family and the evolution of plant form, a polarized gene phylogeny is necessary. Here we suggest that a gene duplication ancestral to the divergence of plants and animals gave rise to two main lineages of MADS-box genes: TypeI and TypeII. We locate the root of the eukaryotic MADS-box gene family between these two lineages. A novel monophyletic group of plant MADS domains (AGL34 like) seems to be more closely related to previously identified animal SRF-like MADS domains to form TypeI lineage. Most other plant sequences form a clear monophyletic group with animal MEF2-like domains to form TypeII lineage. Only plant TypeII members have a K domain that is downstream of the MADS domain in most plant members previously identified. This suggests that the K domain evolved after the duplication that gave rise to the two lineages. Finally, a group of intermediate plant sequences could be the result of recombination events. These analyses may guide the search for MADS-box sequences in basal eukaryotes and the phylogenetic placement of new genes from other plant species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A transference chamber was developed to measure the osmotic water permeability coefficient (Pos) in protoplasts 40 to 120 μm in diameter. The protoplast was held by a micropipette and submitted to a steep osmotic gradient created in the transference chamber. Pos was derived from the changes in protoplast dimensions, as measured using a light microscope. Permeabilities were in the range 1 to 1000 μm s−1 for the various types of protoplasts tested. The precision for Pos was ≤40%, and within this limit, no asymmetry in the water fluxes was observed. Measurements on protoplasts isolated from 2- to 5-d-old roots revealed a dramatic increase in Pos during root development. A shift in Pos from 10 to 500 μm s−1 occurred within less than 48 h. This phenomenon was found in maize (Zea mays), wheat (Triticum aestivum), and rape (Brassica napus) roots. These results show that early developmental processes modify water-transport properties of the plasma membrane, and that the transference chamber is adapted to the study of water-transport mechanisms in native membranes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Higher plants are sessile organisms that perceive environmental cues such as light and chemical signals and respond by changing their morphologies. Signaling pathways utilize a complex network of interactions to orchestrate biochemical and physiological responses such as flowering, fruit ripening, germination, photosynthetic regulation, and shoot or root development. In this session, the mechanisms of signaling systems that trigger plant responses to light and to the gaseous hormone, ethylene, were discussed. These signals are first sensed by a receptor and transmitted to the nucleus by a complex network. A signal may be transmitted to the nucleus by any of several systems including GTP binding proteins (G proteins), which change activity upon GTP binding; protein kinase cascades, which sequentially phosphorylate and activate a series of proteins; and membrane ion channels, which change ionic characteristics of the cells. The signal is manifested in the nucleus as a change in the activity of DNA-binding proteins, which are transcription factors that specifically interact and modulate the regulatory regions of genes. Thus, detection of an environmental signal is transmitted through a transduction pathway, and changes in transcription factor activity may coordinate changes in the expression of a portfolio of genes to direct new developmental programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel extensin gene has been identified in soybean (Glycine max L.) that encodes a hydroxyproline-rich glycoprotein (SbHRGP3) with two different domains. In this study expression of SbHRGP3 was investigated during soybean root development. SbHRGP was expressed in roots of mature plants, as well as seedlings, and showed a distinct pattern of expression during root development. The expression of SbHRGP3 increased gradually during root development of seedlings and reached a maximum while the secondary roots were maturing. The maximum expression level was contributed mainly by the secondary roots rather than by the primary root. Furthermore, expression of SbHRGP3 was preferentially detected in the regions undergoing maturation of the primary and secondary roots. These results imply that the expression of SbHRGP3 is regulated in an organ- and development-specific manner and that in soybean SbHRGP3 expression may be required for root maturation, presumably for the cessation of root elongation. Wounding and sucrose in combination enhanced expression of SbHRGP3 in roots, whereas both wounding and sucrose were required for the expression of SbHRGP3 in leaves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aldehyde oxidase (AO; EC 1.2.3.1) activity was measured in seedlings of wild type or an auxin-overproducing mutant, superroot1 (sur1), of Arabidopsis thaliana. Activity staining for AO after native polyacrylamide gel electrophoresis separation of seedling extracts revealed that there were three major bands with AO activity (AO1–3) in wild-type and mutant seedlings. One of them (AO1) had a higher substrate preference for indole-3-aldehyde. This AO activity was significantly higher in sur1 mutant seedlings than in the wild type. The difference in activity was most apparent 7 d after germination, the same time required for the appearance of the remarkable sur1 phenotype, which includes epinastic cotyledons, elongated hypocotyls, and enhanced root development. Higher activity was observed in the root and hypocotyl region of the mutant seedlings. We also assayed the indole-3-acetaldehyde oxidase activity in extracts by high-performance liquid chromatography detection of indole-3-acetic acid (IAA). The activity was about 5 times higher in the extract of the sur1 seedlings, indicating that AO1 also has a substrate preference for abscisic aldehyde. Treatment of the wild-type seedlings with picloram or IAA caused no significant increase in AO1 activity. This result suggested that the higher activity of AO1 in sur1 mutant seedlings was not induced by IAA accumulation and, thus, strongly supports the possible role of AO1 in IAA biosynthesis in Arabidopsis seedlings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leguminous plants in symbiosis with rhizobia form either indeterminate nodules with a persistent meristem or determinate nodules with a transient meristematic region. Sesbania rostrata was thought to possess determinate stem and root nodules. However, the nature of nodule development is hybrid, and the early stages resemble those of indeterminate nodules. Here we show that, depending on the environmental conditions, mature root nodules can be of the indeterminate type. In situ hybridizations with molecular markers for plant cell division, as well as the patterns of bacterial nod and nif gene expression, confirmed the indeterminate nature of 30-day-old functional root nodules. Experimental data provide evidence that the switch in nodule type is mediated by the plant hormone ethylene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In response to infection by Rhizobium, highly differentiated organs called nodules form on legume roots. Within these organs, the symbiotic association between the host plant and bacteria is established. A putative plant transcription factor, NMH7, has been identified in alfalfa root nodules. nmh7 contains a MADS-box DNA-binding region and shows homology to flower homeotic genes. This gene is a member of a multigene family in alfalfa and was identified on the basis of nucleic acid homology to plant regulatory protein genes (MADS-box-containing genes) from Antirrhinum and Arabidopsis. RNA analysis and in situ hybridization showed that expression of this class of regulatory genes is limited to the infected cells of alfalfa root nodules and is likely to be involved in the signal transduction pathway initiated by the bacterial symbiont, Rhizobium meliloti. The expression of nmh7 in a root-derived organ is unusual for this class of regulatory genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used targeted gene disruption in mice to ablate nonmuscle myosin heavy chain B (NMHC-B), one of the two isoforms of nonmuscle myosin II present in all vertebrate cells. Approximately 65% of the NMHC-B−/− embryos died prior to birth, and those that were born suffered from congestive heart failure and died during the first day. No abnormalities were detected in NMHC-B+/− mice. The absence of NMHC-B resulted in a significant increase in the transverse diameters of the cardiac myocytes from 7.8 ± 1.8 μm (right ventricle) and 7.8 ± 1.3 μm (left ventricle) in NMHC-B+/+ and B+/− mice to 14.7 ± 1.1 μm and 13.8 ± 2.3 μm, respectively, in NMHC-B−/− mice (in both cases, P < 0.001). The increase in size of the cardiac myocytes was seen as early as embryonic day 12.5 (4.5 ± 0.2 μm for NMHC-B+/+ and B+/− vs. 7.2 ± 0.6 μm for NMHC-B−/− mice (P < 0.01)). Six of seven NMHC-B−/− newborn mice analyzed by serial sectioning also showed structural cardiac defects, including a ventricular septal defect, an aortic root that either straddled the defect or originated from the right ventricle, and muscular obstruction to right ventricular outflow. Some of the hearts of NMHC-B−/− mice showed evidence for up-regulation of NMHC-A protein. These studies suggest that nonmuscle myosin II-B is required for normal cardiac myocyte development and that its absence results in structural defects resembling, in part, two common human congenital heart diseases, tetralogy of Fallot and double outlet right ventricle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell division and differentiation continue throughout the plant life cycle without significant loss of control. However, little is known about the mechanisms that allow the continuous development of meristems. Cell division is controlled by a family of cyclin-dependent kinases (CDKs). CDK-activating kinases (CAKs) are known to phosphorylate and activate almost all CDKs and thus may have a crucial role in controlling CDK activities in each cell of the meristems. Here, we show that overexpression of sense or antisense gene for Cak1At in Arabidopsis by using the glucocorticoid-mediated transcriptional induction system resulted in a reduction of CDK activities. After 14–24 h of glucocorticoid treatment, starch granules appeared in columellar initials in the root meristem, and cortical initials were periclinally divided into cortical and endodermal cells. Accumulation of the cyclin∷β-glucuronidase fusion protein ceased after 72 h of glucocorticoid treatment. Our results indicate that a change of Cak1At activity leads to differentiation of initial cells, followed by cessation of cell division. Therefore, we propose that differentiation of initial cells is controlled by Cak1At but is maintained independent of cell division.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying the types and distributions of organic substrates that support microbial activities around plant roots is essential for a full understanding of plant–microbe interactions and rhizosphere ecology. We have constructed a strain of the soil bacterium Sinorhizobium meliloti containing a gfp gene fused to the melA promoter which is induced on exposure to galactose and galactosides. We used the fusion strain as a biosensor to determine that galactosides are released from the seeds of several different legume species during germination and are also released from roots of alfalfa seedlings growing on artificial medium. Galactoside presence in seed wash and sterile root washes was confirmed by HPLC. Experiments examining microbial growth on α-galactosides in seed wash suggested that α-galactoside utilization could play an important role in supporting growth of S. meliloti near germinating seeds of alfalfa. When inoculated into microcosms containing legumes or grasses, the biosensor allowed us to visualize the localized presence of galactosides on and around roots in unsterilized soil, as well as the grazing of fluorescent bacteria by protozoa. Galactosides were present in patches around zones of lateral root initiation and around roots hairs, but not around root tips. Such biosensors can reveal intriguing aspects of the environment and the physiology of the free-living soil S. meliloti before and during the establishment of nodulation, and they provide a nondestructive, spatially explicit method for examining rhizosphere soil chemical composition.