45 resultados para Rod Pathway

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

trkB is the high-affinity receptor for brain-derived neurotrophic factor (BDNF), a trophic molecule with demonstrated effects on the survival and differentiation of a wide variety of neuronal populations. In the mammalian retina, trkB is localized to both ganglion cells and numerous cells in the inner nuclear layer. Much information on the role of BDNF in neuronal development has been derived from the study of trkB- and BDNF-deficient mutant mice. This includes an attenuation of the numbers of cortical neurons immunopositive for the calcium-binding proteins, parvalbumin, and calbindin. Unfortunately, these mutant animals typically fail to survive for > 24-48 hr after birth. Since most retinal neuronal differentiation occurs postnatally, we have devised an alternative scheme to suppress the expression of trkB in the retina to examine the role of BDNF on the postnatal development of neurons of the inner retina. Neonatal rats were treated with intraocular injection of an antisense oligonucleotide (1-2 microliters of 10-100 microM solution) targeted to the trkB mRNA. Immunohistochemistry with a polyclonal antibody to trkB showed that the expression of trkB in retinal neurons was suppressed 48-72 hr following a single injection. Northern blot analysis demonstrated that antisense treatment had no effect on the level of trkB mRNA, even after multiple injections. This suggests an effect of trkB antisense treatment on protein translation, but not on RNA transcription. No alterations were observed in the thickness of retinal cellular or plexiform layers, suggesting that BDNF is not the sole survival factor for these neurons. There were, however, alterations in the patterns of immunostaining for parvalbumin, a marker for the narrow-field, bistratified AII amacrine cell-a central element of the rod (scotopic) pathway. This was evidenced by a decrease in both the number of immunostained somata (> 50%) and in the intensity of immunolabeling. However, the immunostaining pattern of calbindin was not affected. These studies suggest that the ligands for trkB have specific effects on the neurochemical phenotypic expression of inner retinal neurons and in the development of a well-defined retinal circuit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the mammalian retina, extensive processing of spatiotemporal and chromatic information occurs. One key principle in signal transfer through the retina is parallel processing. Two of these parallel pathways are the ON- and OFF-channels transmitting light and dark signals. This dual system is created in the outer plexiform layer, the first relay station in retinal signal transfer. Photoreceptors release glutamate onto ON- and OFF-type bipolar cells, which are functionally distinguished by their postsynaptic expression of different types of glutamate receptors, namely ionotropic and metabotropic glutamate receptors. In the current concept, rod photoreceptors connect only to rod bipolar cells (ON-type) and cone photoreceptors connect only to cone bipolar cells (ON- and OFF-type). We have studied the distribution of (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunits at the synapses in the outer plexiform layer of the rodent retina by immunoelectron microscopy and serial section reconstruction. We report a non-classical synaptic contact and an alternative pathway for rod signals in the retina. Rod photoreceptors made synaptic contact with putative OFF-cone bipolar cells that expressed the AMPA glutamate receptor subunits GluR1 and GluR2 on their dendrites. Thus, in the retina of mouse and rat, an alternative pathway for rod signals exists, where rod photoreceptors bypass the rod bipolar cell and directly excite OFF-cone bipolar cells through an ionotropic sign-conserving AMPA glutamate receptor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rod signals in the mammalian retina are thought to reach ganglion cells over the circuit rod-->rod depolarizing bipolar cell-->AII amacrine cell-->cone bipolar cells-->ganglion cells. A possible alternative pathway involves gap junctions linking the rods and cones, the circuit being rod-->cone-->cone bipolar cells-->ganglion cells. It is not clear whether this second pathway indeed relays rod signals to ganglion cells. We studied signal flow in the isolated rabbit retina with a multielectrode array, which allows the activity of many identified ganglion cells to be observed simultaneously while the preparation is stimulated with light and/or exposed to drugs. When transmission between rods and rod depolarizing bipolar cells was blocked by the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), rod input to all On-center and briskly responding Off-center ganglion cells was dramatically reduced as expected. Off responses persisted, however, in Off-center sluggish and On-Off direction-selective ganglion cells. Presumably these responses were generated by the alternative pathway involving rod-cone junctions. This APB-resistant pathway may carry the major rod input to Off-center sluggish and On-Off direction-selective ganglion cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the genes encoding two proteins of the retinal rod phototransduction cascade, opsin and the beta subunit of rod cGMP phosphodiesterase, cause retinitis pigmentosa (RP) in some families. Here we report defects in a third member of this biochemical pathway in still other patients with this disease. We screened 94 unrelated patients with autosomal dominant RP and 173 unrelated patients with autosomal recessive RP for mutations in the gene encoding the alpha subunit of the rod cGMP-gated cation channel. Five mutant sequences cosegregated with disease among four unrelated families with autosomal recessive RP. Two of these were nonsense mutations early in the reading frame (Glu76End and Lys139End) and one was a deletion encompassing most if not all of the transcriptional unit; these three alleles would not be expected to encode a functional channel. The remaining two mutations were a missense mutation (Ser316Phe) and a frameshift [Arg654(1-bp del)] mutation truncating the last 32 aa in the C terminus. The latter two mutations were expressed in vitro and found to encode proteins that were predominantly retained inside the cell instead of being targeted to the plasma membrane. We conclude that the absence or paucity of functional cGMP-gated cation channels in the plasma membrane is deleterious to rod photoreceptors and is an uncommon cause of RP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 12 (IL-12)-induced T helper 1 (Th1) development requires Stat4 activation. However, antigen-activated Th1 cells can produce interferon γ (IFN-γ) independently of IL-12 and Stat4 activation. Thus, in differentiated Th1 cells, factors regulated by IL-12 and Stat4 may be involved in IFN-γ production. Using subtractive cloning, we identified ERM, an Ets transcription factor, to be a Th1-specific, IL-12-induced gene. IL-12-induction of ERM occurred in wild-type and Stat1-deficient, but not Stat4-deficient, T cells, suggesting ERM is Stat4-inducible. Retroviral expression of ERM did not restore IFN-γ production in Stat4-deficient T cells, but augmented IFN-γ expression in Stat4-heterozygous T cells. Ets factors frequently regulate transcription via cooperative interactions with other transcription factors, and ERM has been reported to cooperate with c-Jun. However, in the absence of other transcription factors, ERM augmented expression of an IFN-γ reporter by only 2-fold. Thus, determining the requirement for ERM in Th1 development likely will require gene targeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initiation factor eIF4G is an essential protein required for initiation of mRNA translation via the 5′ cap-dependent pathway. It interacts with eIF4E (the mRNA 5′ cap-binding protein) and serves as an anchor for the assembly of further initiation factors. With treatment of Saccharomyces cerevisiae with rapamycin or with entry of cells into the diauxic phase, eIF4G is rapidly degraded, whereas initiation factors eIF4E and eIF4A remain stable. We propose that nutritional deprivation or interruption of the TOR signal transduction pathway induces eIF4G degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ligand-controlled retinoic acid (RA) receptors and retinoid X receptors are important for several physiological processes, including normal embryonic development, but little is known about how their ligands, all-trans and 9-cis RA, are generated. Here we report the identification of a stereo-specific 9-cis retinol dehydrogenase, which is abundantly expressed in embryonic tissues known to be targets in the retinoid signaling pathway. The membrane-bound enzyme is a member of the short-chain alcohol dehydrogenase/reductase superfamily, able to oxidize 9-cis retinol into 9-cis retinaldehyde, an intermediate in 9-cis RA biosynthesis. Analysis by nonradioactive in situ hybridization in mouse embryos shows that expression of the enzyme is temporally and spatially well controlled during embryogenesis with prominent expression in parts of the developing central nervous system, sensory organs, somites and myotomes, and several tissues of endodermal origin. The identification of this enzyme reveals a pathway in RA biosynthesis, where 9-cis retinol is generated for subsequent oxidation to 9-cis RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What are the limits and modulators of neural precision? We address this question in the most regular biological oscillator known, the electric organ command nucleus in the brainstem of wave-type gymnotiform fish. These fish produce an oscillating electric field, the electric organ discharge (EOD), used in electrolocation and communication. We show here that the EOD precision, measured by the coefficient of variation (CV = SD/mean period) is as low as 2 × 10−4 in five species representing three families that range widely in species and individual mean EOD frequencies (70–1,250 Hz). Intracellular recording in the pacemaker nucleus (Pn), which commands the EOD cycle by cycle, revealed that individual Pn neurons of the same species also display an extremely low CV (CV = 6 × 10−4, 0.8 μs SD). Although the EOD CV can remain at its minimum for hours, it varies with novel environmental conditions, during communication, and spontaneously. Spontaneous changes occur as abrupt steps (250 ms), oscillations (3–5 Hz), or slow ramps (10–30 s). Several findings suggest that these changes are under active control and depend on behavioral state: mean EOD frequency and CV can change independently; CV often decreases in response to behavioral stimuli; and lesions of one of the two inputs to the Pn had more influence on CV than lesions of the other input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory transduction in olfactory neurons involves the activation of a cyclic nucleotide-gated (CNG) channel by cAMP. Previous studies identified a CNG channel α subunit (CNG2) and a β subunit (CNG5), which when heterologously expressed form a channel with properties similar but not identical to those of native olfactory neurons. We have cloned a new type of CNG channel β subunit (CNG4.3) from rat olfactory epithelium. CNG4.3 derives from the same gene as the rod photoreceptor β subunit (CNG4.1) but lacks the long, glutamic acid-rich domain found in the N terminus of CNG4.1. Northern blot and in situ hybridization revealed that CNG4.3 is expressed specifically in olfactory neurons. Expression of CNG4.3 in human embryonic kidney 293 cells did not lead to detectable currents. Coexpression of CNG4.3 with CNG2 induced a current with significantly increased sensitivity for cAMP whereas cGMP affinity was not altered. Additionally, CNG4.3 weakened the outward rectification of the current in the presence of extracellular Ca2+, decreased the relative permeability for Ca2+, and enhanced the sensitivity for l-cis diltiazem. Upon coexpression of CNG2, CNG4.3, and CNG5, a conductance with a cAMP sensitivity greater than that of either the CNG2/CNG4.3 or the CNG2/CNG5 channel and near that of native olfactory channel was observed. Our data suggest that CNG4.3 forms a subunit of the native olfactory CNG channel. The expression of various CNG4 isoforms in retina and olfactory epithelium indicates that the CNG4 subunit may be necessary for normal function of both photoreceptor and olfactory CNG channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

cAMP, through the activation of cAMP-dependent protein kinase (PKA), is involved in transcriptional regulation. In eukaryotic cells, cAMP is not considered to alter the binding affinity of CREB/ATF to cAMP-responsive element (CRE) but to induce serine phosphorylation and consequent increase in transcriptional activity. In contrast, in prokaryotic cells, cAMP enhances the DNA binding of the catabolite repressor protein to regulate the transcription of several operons. The structural similarity of the cAMP binding sites in catabolite repressor protein and regulatory subunit of PKA type II (RII) suggested the possibility of a similar role for RII in eukaryotic gene regulation. Herein we report that RIIβ subunit of PKA is a transcription factor capable of interacting physically and functionally with a CRE. In contrast to CREB/ATF, the binding of RIIβ to a CRE was enhanced by cAMP, and in addition, RIIβ exhibited transcriptional activity as a Gal4-RIIβ fusion protein. These experiments identify RIIβ as a component of an alternative pathway for regulation of CRE-directed transcription in eukaryotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure at 2.0-Å resolution of the complex of the Escherichia coli chemotaxis response regulator CheY and the phosphoacceptor-binding domain (P2) of the kinase CheA is presented. The binding interface involves the fourth and fifth helices and fifth β-strand of CheY and both helices of P2. Surprisingly, the two heterodimers in the asymmetric unit have two different binding modes involving the same interface, suggesting some flexibility in the binding regions. Significant conformational changes have occurred in CheY compared with previously determined unbound structures. The active site of CheY is exposed by the binding of the kinase domain, possibly to enhance phosphotransfer from CheA to CheY. The conformational changes upon complex formation as well as the observation that there are two different binding modes suggest that the plasticity of CheY is an essential feature of response regulator function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In kidney epithelial cells, an angiotensin II (Ang II) type 2 receptor subtype (AT2) is linked to a membrane-associated phospholipase A2 (PLA2) and the mitogen-activated protein kinase (MAPK) superfamily. However, the intervening steps in this linkage have not been determined. The aim of this study was to determine whether arachidonic acid mediates Ang II’s effect on p21ras and if so, to ascertain the signaling mechanism(s). We observed that Ang II activated p21ras and that mepacrine, a phospholipase A2 inhibitor, blocked this effect. This activation was also inhibited by PD123319, an AT2 receptor antagonist but not by losartan, an AT1 receptor antagonist. Furthermore, Ang II caused rapid tyrosine phosphorylation of Shc and its association with Grb2. Arachidonic acid and linoleic acid mimicked Ang II-induced tyrosine phosphorylation of Shc and activation of p21ras. Moreover, Ang II and arachidonic acid induced an association between p21ras and Shc. We demonstrate that arachidonic acid mediates linkage of a G protein-coupled receptor to p21ras via Shc tyrosine phosphorylation and association with Grb2/Sos. These observations have important implications for other G protein-coupled receptors linked to a variety of phospholipases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic selections that use proteinaceous transdominant inhibitors encoded by DNA libraries to cause mutant phenocopies may facilitate genetic analysis in traditionally nongenetic organisms. We performed a selection for random short peptides and larger protein fragments (collectively termed “perturbagens”) that inhibit the yeast pheromone response pathway. Peptide and protein fragment perturbagens that permit cell division in the presence of pheromone were recovered. Two perturbagens were derived from proteins required for pheromone response, and an additional two were derived from proteins that may negatively influence the pheromone response pathway. Furthermore, three known components of the pathway were identified as probable perturbagen targets based on physical interaction assays. Thus, by selection for transdominant inhibitors of pheromone response, multiple pathway components were identified either directly as gene fragments or indirectly as the likely targets of specific perturbagens. These results, combined with the results of previous work [Holzmayer, T. A., Pestov, D. G. & Roninson, I. B. (1992) Nucl. Acids. Res. 20, 711–717; Whiteway, M., Dignard, D. & Thomas, D. Y. (1992) Proc. Natl. Acad. Sci. USA 89, 9410–9414; and Gudkov, A. V., Kazarov, A. R., Thimmapaya, R., Axenovich, S. A., Mazo, I. A. & Roninson, I. B. (1994) Proc. Natl. Acad. Sci. USA 91, 3744–3748], suggest that transdominant genetic analysis of the type described here will be broadly applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP12 agarose beads. Insulin affected neither the amount of mTOR immunoprecipitated nor the amount of mTOR detected by immunoblotting with mTAb2. However, the hormone markedly decreased the reactivity of mTOR with mTAb1, an antibody that activates the mTOR protein kinase. The effects of insulin on increasing mTOR protein kinase activity and on decreasing mTAb1 reactivity were abolished by incubating mTOR with protein phosphatase 1. Interestingly, the epitope for mTAb1 is located near the COOH terminus of mTOR in a 20-amino acid region that includes consensus sites for phosphorylation by protein kinase B (PKB). Experiments were performed in MER-Akt cells to investigate the role of PKB in controlling mTOR. These cells express a PKB-mutant estrogen receptor fusion protein that is activated when the cells are exposed to 4-hydroxytamoxifen. Activating PKB with 4-hydroxytamoxifen mimicked insulin by decreasing mTOR reactivity with mTAb1 and by increasing the PHAS-I kinase activity of mTOR. Our findings support the conclusion that insulin activates mTOR by promoting phosphorylation of the protein via a signaling pathway that contains PKB.