4 resultados para Rochette, Raoul

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein–protein interacting surfaces are usually large and intricate, making the rational design of small mimetics of these interfaces a daunting problem. On the basis of a structural similarity between the CDR2-like loop of CD4 and the β-hairpin region of a short scorpion toxin, scyllatoxin, we transferred the side chains of nine residues of CD4, central in the binding to HIV-1 envelope glycoprotein (gp120), to a structurally homologous region of the scorpion toxin scaffold. In competition experiments, the resulting 27-amino acid miniprotein inhibited binding of CD4 to gp120 with a 40 μM IC50. Structural analysis by NMR showed that both the backbone of the chimeric β-hairpin and the introduced side chains adopted conformations similar to those of the parent CD4. Systematic single mutations suggested that most CD4 residues from the CDR2-like loop were reproduced in the miniprotein, including the critical Phe-43. The structural and functional analysis performed suggested five additional mutations that, once incorporated in the miniprotein, increased its affinity for gp120 by 100-fold to an IC50 of 0.1–1.0 μM, depending on viral strains. The resulting mini-CD4 inhibited infection of CD4+ cells by different virus isolates. Thus, core regions of large protein–protein interfaces can be reproduced in miniprotein scaffolds, offering possibilities for the development of inhibitors of protein–protein interactions that may represent useful tools in biology and in drug discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyzing the pathways by which retinoic acid (RA) induces promyelocytic leukemia/retinoic acid receptor α (PML/RARα) catabolism in acute promyelocytic leukemia (APL), we found that, in addition to caspase-mediated PML/RARα cleavage, RA triggers degradation of both PML/RARα and RARα. Similarly, in non-APL cells, RA directly targeted RARα and RARα fusions to the proteasome degradation pathway. Activation of either RARα or RXRα by specific agonists induced degradation of both proteins. Conversely, a mutation in RARα that abolishes heterodimer formation and DNA binding, blocked both RARα and RXRα degradation. Mutations in the RARα DNA-binding domain or AF-2 transcriptional activation region also impaired RARα catabolism. Hence, our results link transcriptional activation to receptor catabolism and suggest that transcriptional up-regulation of nuclear receptors by their ligands may be a feedback mechanism allowing sustained target-gene activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial photosynthesis relies on the interplay between light harvesting and electron transfer complexes, all of which are located within the intracytoplasmic membrane. These complexes capture and transfer solar energy, which is used to generate a proton gradient. In this study, we identify one of the factors that determines the organization of these complexes. We undertook a comparison of the organization of the light-harvesting complex 1 (LH1)/reaction center (RC) cores in the LH2− mutant of Rhodobacter sphaeroides in the presence or absence of the PufX protein. From polarized absorption spectra on oriented membranes, we conclude that PufX induces a specific orientation of the reaction center in the LH1 ring, as well as the formation of a long-range regular array of LH1-RC cores in the photosynthetic membrane. From our data, we have constructed a precise model of how the RC is positioned within the LH1 ring relative to the long (orientation) axis of the photosynthetic membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesothelioma, a malignancy associated with asbestos, has been recently linked to simian virus 40 (SV40). We found that infection of human mesothelial cells by SV40 is very different from the semipermissive infection thought to be characteristic of human cells. Mesothelial cells are uniformly infected but not lysed by SV40, a mechanism related to p53, and undergo cell transformation at an extremely high rate. Exposure of mesothelial cells to asbestos complemented SV40 mutants in transformation. Our data provide a mechanistic explanation for the ability of SV40 to transform mesothelial cells preferentially and indicate that asbestos and SV40 may be cocarcinogens.