8 resultados para Right to Self-Determination
em National Center for Biotechnology Information - NCBI
Resumo:
Recent data suggest that survival of resting, naïve T cells requires an interaction with self MHC molecules. From analysis of the class I MHC-restricted T cell receptor transgenic strain OT-I, we report a different response. Rather than merely surviving, these T cells proliferated slowly after transfer into T-depleted syngeneic hosts. This expansion required both T cell “space” and expression of normal levels of self class I MHC molecules. Furthermore, we demonstrate that during homeostatic expansion in a suitable environment, naïve phenotype (CD44low) OT-I T cells converted to memory phenotype (CD44med/high), despite the absence of foreign antigenic stimulation. On the other hand, cells undergoing homeostatic expansion did not acquire cytolytic effector function. The significance of these data for reactivity of T cells with self peptide/MHC ligands and the implications for normal and abnormal T cell homeostasis are discussed.
Resumo:
The intellectual property laws in the United States provide the owners of intellectual property with discretion to license the right to use that property or to make or sell products that embody the intellectual property. However, the antitrust laws constrain the use of property, including intellectual property, by a firm with market power and may place limitations on the licensing of intellectual property. This paper focuses on one aspect of antitrust law, the so-called “essential facilities doctrine,” which may impose a duty upon firms controlling an “essential facility” to make that facility available to their rivals. In the intellectual property context, an obligation to make property available is equivalent to a requirement for compulsory licensing. Compulsory licensing may embrace the requirement that the owner of software permit access to the underlying code so that others can develop compatible application programs. Compulsory licensing may undermine incentives for research and development by reducing the value of an innovation to the inventor. This paper shows that compulsory licensing also may reduce economic efficiency in the short run by facilitating the entry of inefficient producers and by promoting licensing arrangements that result in higher prices.
Resumo:
A 16-amino acid oligopeptide forms a stable β-sheet structure in water. In physiological solutions it is able to self-assemble to form a macroscopic matrix that stains with Congo red. On raising the temperature of the aqueous solution above 70°C, an abrupt structural transition occurs in the CD spectra from a β-sheet to a stable α-helix without a detectable random-coil intermediate. With cooling, it retained the α-helical form and took several weeks at room temperature to partially return to the β-sheet form. Slow formation of the stable β-sheet structure thus shows kinetic irreversibility. Such a formation of very stable β-sheet structures is found in the amyloid of a number of neurological diseases. This oligopeptide could be a model system for studying the protein conformational changes that occurs in scrapie or Alzheimer disease. The abrupt and direct conversion from a β-sheet to an α-helix may also be found in other processes, such as protein folding and protein–protein interaction. Furthermore, such drastic structure changes may also be exploited in biomaterials designed as sensors to detect environmental changes.
Resumo:
Allelic exclusion at the T-cell receptor alpha chain locus is incomplete resulting in the generation of T cells that express two T-cell receptors. The potential involvement of such T cells in autoimmunity has been suggested [Padovan, E., Casorati, G., Dellabona, P., Meyer, S., Brockhaus, M. & Lanzavecchia, A. (1993) Science 262, 422-424; Heath, W. R. & Miller, J. F. A. P. (1993) J. Exp. Med. 178, 1807-1811]. Here we show that expression of a second T-cell receptor can rescue T cells with autospecific receptors from thymic deletion and allow their exit into the periphery. Dual receptor T cells, created by constitutive expression of two transgenic T-cell receptors on a Rag1-/- background, are tolerant to self by maintaining low levels of autospecific receptor, but selfreactive effector function (killing) can be induced through activation via the second receptor. This opens the possibility that T cells carrying two receptors in the periphery of normal individuals contain putatively autoreactive cells that could engage in autoimmune effector functions after recognition of an unrelated environmental antigen.
Self-recognition and abstraction abilities in the common chimpanzee studied with distorting mirrors.
Resumo:
The reactions of chimpanzees to regular mirrors and the results of the standard Gallup mark test have been well documented. In addition to using the mark test to demonstrate self-recognition in a regular mirror, we exposed six female chimpanzees to mirrors that produced distorted or multiplied self-images. Their reactions to their self-images, in terms of mirror-guided self-referenced behaviors, indicated that correct assessment of the source of the mirror image was made by each subject in each of the mirrors. Recognition of a distorted self-image implies an ability for abstraction in the subjects in that the distortion must be rationalized before self-recognition occurs. The implications of these results in terms of illuminating the relative importance of feature and contingency of movement cues to self-recognition are discussed.
Resumo:
Little is known about the mechanisms involved in human gammadelta T-cell tolerance to self or to foreign antigens. Patients with congenital toxoplasmosis offer a unique opportunity to examine Vdelta2+ gammadelta T-cell tolerance. Analysis of gammadelta T cells in patients with congenital toxoplasmosis revealed evidence for anergy of these cells with or without clonal Vdelta2+ gammadelta T-cell expansion in the acute phase of the Toxoplasma infection. T cells in general were unresponsive and did not proliferate upon exposure to mitogens or to Toxoplasma lysate antigens or in response to live Toxoplasma-infected cells when the congenitally infected infants were 1 month of age, and they exhibited selective anergy to Toxoplasma lysate antigens and live Toxoplasma-infected cells when the infants were aged 5 months. During the chronic phase of congenital toxoplasmosis in the patients who were more than I year of age, the repertoires of the gammadelta T-cell receptors were found to be within normal ranges. In addition, in the chronic phase, the gammadelta T cells proliferated and secreted gamma-interferon in response to exposure to live Toxoplasmia-infected cells. By contrast, alphabeta T cells remained anergic. Vdelta2+ gammadelta T cells have been considered to undergo extrathymic maturation and thus to be subject to development of peripheral tolerance. Our findings indicate that Vdelta2+ gammadelta T-cell tolerance was lost in these infected infants earlier than alphabeta T-cell tolerance. These findings suggest that gammadelta T cells play a role in protection against Toxoplasma gondii in the chronic phase when congenitally infected children are more than 1 year of age, especially in those in whom alphabeta T cells continue to exhibit deficits in specific immune responses to Toxoplasma antigens.
Resumo:
Central to signaling by fibroblast growth factors (FGFs) is the oligomeric interaction of the growth factor and its high-affinity cell surface receptor, which is mediated by heparin-like polysaccharides. It has been proposed that the binding of heparin-like polysaccharides to FGF induces a conformational change in FGF, resulting in the formation of FGF dimers or oligomers, and this biologically active form is 'presented' to the FGF receptor for signal transduction. In this study, we show that monomeric basic FGF (FGF-2) preferentially self-associates and forms FGF-2 dimers and higher-order oligomers. As a consequence, FGF-2 monomers are oriented for binding to heparin-like polysaccharides. We also show that heparin-like polysaccharides can readily bind to self-associated FGF-2 without causing a conformational change in FGF-2 or disrupting the FGF-2 self-association, but that the bound polysaccharides only additionally stabilize the FGF-2 self-association. The preferential self-association corresponds to FGF-2 translations along two of the unit cell axes of the FGF-2 crystal structures. These two axes represent the two possible heparin binding directions, whereas the receptor binding sites are oriented along the third axis. Thus, we propose that preferential FGF-2 self-association, further stabilized by heparin, like "beads on a string," mediates FGF-2-induced receptor dimerization and activation. The observed FGF-2 self-association, modulated by heparin, not only provides a mechanism of growth factor activation but also represents a regulatory mechanism governing FGF-2 biological activity.
Resumo:
MyoD is a member of a family of DNA-binding transcription factors that contain a helix-loop-helix (HLH) region involved in protein-protein interactions. In addition to self-association and DNA binding, MyoD associates with a number of other HLH-containing proteins, thereby modulating the strength and specificity of its DNA binding. Here, we examine the interactions of full-length MyoD with itself and with an HLH-containing peptide portion of an E2A gene product, E47-96. Analytical ultracentrifugation reveals that MyoD forms micelles that contain more than 100 monomers and are asymmetric and stable up to 36 degrees C. The critical micelle concentration increases slightly with temperature, but micelle size is unaffected. The micelles are in reversible equilibrium with monomer. Addition of E47-96 results in the stoichiometric formation of stable MyoD-E47-96 heterodimers and the depletion of micelles. Micelle formation effectively holds the concentration of free MyoD constant and equal to the critical micelle concentration. In the presence of micelles, the extent of all interactions involving free MyoD is independent of the total MyoD concentration and independent of one another. For DNA binding, the apparent relative specificity for different sites can be affected. In general, heterodimer-associated activities will depend on the self-association behavior of the partner protein.