16 resultados para Right of Partial Withdrawal

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Missense mutations within the central DNA binding region of p53 are the most prevalent mutations found in human cancer. Numerous studies indicate that ‘hot-spot’ p53 mutants (which comprise ∼30% of human p53 gene mutations) are largely devoid of transcriptional activity. However, a growing body of evidence indicates that some non-hot-spot p53 mutants retain some degree of transcriptional activity in vivo, particularly against strong p53 binding sites. We have modified a previously described yeast-based p53 functional assay to readily identify such partial loss of function p53 mutants. We demonstrate the utility of this modified p53 functional assay using a diverse panel of p53 mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full activation of T cells requires signaling through the T-cell antigen receptor (TCR) and additional surface molecules interacting with ligands on the antigen-presenting cell. TCR recognition of agonist ligands in the absence of accessory signals frequently results in the induction of a state of unresponsiveness termed anergy. However, even in the presence of costimulation, anergy can be induced by TCR partial agonists. The unique pattern of early receptor-induced tyrosine phosphorylation events induced by partial agonists has led to the hypothesis that altered TCR signaling is directly responsible for the development of anergy. Here we show that anergy induction is neither correlated with nor irreversibly determined by the pattern of early TCR-induced phosphorylation. Rather, it appears to result from the absence of downstream events related to interleukin 2 receptor occupancy and/or cell division. This implies that the anergic state can be manipulated independently of the precise pattern of early biochemical changes following TCR occupancy, a finding with implications for understanding the induction of self-tolerance and the use of partial agonist ligands in the treatment of autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero “local mean,” and a final nonoscillatory mode. With this device, we obtain a set of “mean trends,” each of which represents a “mean” in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of “indicial response function” is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to improve behavioral memory, we devised a strategy to amplify the signal-to-noise ratio of the cAMP pathway, which plays a central role in hippocampal synaptic plasticity and behavioral memory. Multiple high-frequency trains of electrical stimulation induce long-lasting long-term potentiation, a form of synaptic strengthening in hippocampus that is greater in both magnitude and persistence than the short-lasting long-term potentiation generated by a single tetanic train. Studies using pharmacological inhibitors and genetic manipulations have shown that this difference in response depends on the activity of cAMP-dependent protein kinase A. Genetic studies have also indicated that protein kinase A and one of its target transcription factors, cAMP response element binding protein, are important in memory in vivo. These findings suggested that amplification of signals through the cAMP pathway might lower the threshold for generating long-lasting long-term potentiation and increase behavioral memory. We therefore examined the biochemical, physiological, and behavioral effects in mice of partial inhibition of a hippocampal cAMP phosphodiesterase. Concentrations of a type IV-specific phosphodiesterase inhibitor, rolipram, which had no significant effect on basal cAMP concentration, increased the cAMP response of hippocampal slices to stimulation with forskolin and induced persistent long-term potentiation in CA1 after a single tetanic train. In both young and aged mice, rolipram treatment before training increased long- but not short-term retention in freezing to context, a hippocampus-dependent memory task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last 2 years, our laboratory has worked on the elucidation of the molecular basis of capacitative calcium entry (CCE) into cells. Specifically, we tested the hypothesis that CCE channels are formed of subunits encoded in genes related to the Drosophila trp gene. The first step in this pursuit was to search for mammalian trp genes. We found not one but six mammalian genes and cloned several of their cDNAs, some in their full length. As assayed in mammalian cells, overexpression of some mammalian Trps increases CCE, while expression of partial trp cDNAs in antisense orientation can interfere with endogenous CCE. These findings provided a firm connection between CCE and mammalian Trps. This article reviews the known forms of CCE and highlights unanswered questions in our understanding of intracellular Ca2+ homeostasis and the physiological roles of CCE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MADS genes encode a family of transcription factors, some of which control the identities of floral organs in flowering plants. To understand the role of MADS genes in the evolution of floral organs, five MADS genes (CMADS1, 2, 3, 4, and 6) were cloned from the fern Ceratopteris richardii, a nonflowering plant. A gene tree of partial amino acid sequences of seed plant and fern MADS genes showed that the fern genes form three subfamilies. All members of one of the fern MADS subfamilies have additional amino-terminal amino acids, which is a synapomorphic character of the AGAMOUS subfamily of the flowering plant MADS genes. Their structural similarity indicates a sister relationship between the two subfamilies. The temporal and spatial patterns of expression of the five fern MADS genes were assessed by Northern blot analyses and in situ hybridizations. CMADS1, 2, 3, and 4 are expressed similarly in the meristematic regions and primordia of sporophyte shoots and roots, as well as in reproductive structures, including sporophylls and sporangial initials, although the amount of expression in each tissue is different in each gene. CMADS6 is expressed in gametophytic tissues but not in sporophytic tissues. The lack of organ-specific expression of MADS genes in the reproductive structures of the fern sporophyte may indicate that the restriction of MADS gene expression to specific reproductive organs and the specialization of MADS gene functions as homeotic selector genes in the flowering plant lineage were important in floral organ evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of “effector-loop” mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine is an inhibitor of neuronal activity in the brain. The local release of adenosine from grafted cells was evaluated as an ex vivo gene therapy approach to suppress synchronous discharges and epileptic seizures. Fibroblasts were engineered to release adenosine by inactivating the adenosine-metabolizing enzymes adenosine kinase and adenosine deaminase. After encapsulation into semipermeable polymers, the cells were grafted into the brain ventricles of electrically kindled rats, a model of partial epilepsy. Grafted rats provided a nearly complete protection from behavioral seizures and a near-complete suppression of afterdischarges in electroencephalogram recordings, whereas the full tonic–clonic convulsions in control rats remained unaltered. Thus, the local release of adenosine resulting in adenosine concentrations <25 nM at the site of action is sufficient to suppress seizure activity and, therefore, provides a potential therapeutic principle for the treatment of drug-resistant partial epilepsies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62° and 88° after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle −36° closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modification of damaged replication forks is emerging as a crucial factor for efficient chromosomal duplication and the avoidance of genetic instability. The RecG helicase of Escherichia coli, which is involved in recombination and DNA repair, has been postulated to act on stalled replication forks to promote replication restart via the formation of a four-stranded (Holliday) junction. Here we show that RecG can actively unwind the leading and lagging strand arms of model replication fork structures in vitro. Unwinding is achieved in each case by simultaneous interaction with and translocation along both the leading and lagging strand templates at a fork. Disruption of either of these interactions dramatically inhibits unwinding of the opposing duplex arm. Thus, RecG translocates simultaneously along two DNA strands, one with 5′-3′ and the other with 3′-5′ polarity. The unwinding of both nascent strands at a damaged fork, and their subsequent annealing to form a Holliday junction, may explain the ability of RecG to promote replication restart. Moreover, the preferential binding of partial forks lacking a leading strand suggests that RecG may have the ability to target stalled replication intermediates in vivo in which lagging strand synthesis has continued beyond the leading strand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HIV-1 envelope glycoprotein gp120 displays inefficient intracellular transport, which is caused by its retention in the endoplasmic reticulum. Coexpression in insect cells (Sf9) of HIV-1 gp120 with calnexin has shown that their interaction was modulated by the signal sequence of HIV-1 gp120. gp120, with its natural signal sequence, showed a prolonged association with calnexin with a t1/2 of greater than 20 min. Replacement of the natural signal sequence with the signal sequence from mellitin led to a decreased time of association of gp120 with calnexin (t1/2 < 10 min). These different times of calnexin association coincided both with the folding of gp120 as measured by the ability of bind CD4 and with endoplasmic reticulum to Golgi transport as analyzed by the acquisition of partial endoglycosidase H resistance. Using a monospecific antibody to the HIV-1 gp120 natural signal peptide, we showed that calnexin associated with N-glycosylated but uncleaved gp120. Only after dissociation from calnexin was gp120 cleaved, but very inefficiently. Only the small proportion of signal-cleaved gp120 molecules acquired transport competence and were secreted. This is the first report demonstrating the effect of the signal sequence on calnexin association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated hippocampal inhibitory function and the level of expression of gamma-aminobutyric acid type A (GABAA) receptor mRNA in an in vivo model of epilepsy. Chronic recurrent limbic seizures were induced in rats using injections of pilocarpine. Electrophysiological studies performed on hippocampal slices prepared from control and epileptic animals 1 to 2 months after pilocarpine injections demonstrated a significant hyperexcitability in the epileptic animals. Reduced levels of mRNA expression for the alpha 2 and alpha 5 subunits of the GABAA receptors were evident in the CA1, CA2, and CA3 regions of the hippocampus of epileptic animals. No decrease in mRNA encoding alpha 1, beta 2, or gamma 2 GABAA receptor subunits was observed. In addition, no change in the mRNA levels of alpha CaM kinase II was seen. Selective decreases in mRNA expression did not correlate with neuronal cell loss. The results indicate that selective, long-lasting reduction of GABAA subunit mRNA expression and increased excitability, possibly reflecting loss of GABAergic inhibition, occur in an in vivo model of partial complex epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical conditioning of Aplysia's siphon-withdrawal reflex is thought to be due to a presynaptic mechanism-activity-dependent presynaptic facilitation of sensorimotor connections. Recent experiments with sensorimotor synapses in dissociated cell culture, however, provide an alternative cellular mechanism for classical conditioning-Hebbian long-term potentiation (LTP) of sensorimotor connections. Induction of Hebbian LTP of these connections is mediated by activation of N-methyl-D-aspartate-related receptors and requires the postsynaptic elevation of intracellular Ca2+. To determine whether the enhancement of sensorimotor synapses during classical conditioning in Aplysia-like LTP of sensorimotor synapses in culture-also depends upon the elevation of postsynaptic Ca2+, we carried out experiments involving the cellular analog of classical conditioning of siphon withdrawal. We examined changes in the strength of monosynaptic siphon sensorimotor connections in the abdominal ganglion of Aplysia following paired presentations of sensory neuron activation and tail nerve shock. This training regimen resulted in significant enhancement of the monosynaptic sensorimotor excitatory postsynaptic potential, as compared with the sensorimotor excitatory postsynaptic potential in preparations that received only test stimulation. Infusing the motor neuron with 1,2-bis(2-aminophenoxy)ethane-N,N-N',N'-tetraacetic acid, a specific chelator of intracellular Ca2+, prior to paired stimulation training blocked this synaptic enhancement. Our results implicate a postsynaptic, possibly Hebbian, mechanism in classical conditioning in Aplysia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody-based therapies for cancer rely on the expression of defined antigens on neoplastic cells. However, most tumors display heterogeneity in the expression of such antigens. We demonstrate here that antibody-targeted interleukin 2 delivery overcomes this problem by induction of a host immune response. Immunohistochemical analysis demonstrated that the antibody-interleukin 2 fusion protein-induced eradication of established tumors is mediated by host immune cells, particularly CD8+ T cells. Because of this cellular immune response, antibody-directed interleukin 2 therapy is capable to address established metastases displaying substantial heterogeneity in expression of the targeted antigen. This effector mechanism further enables the induction of partial regressions of large subcutaneous tumors that exceeded more than 5% of the body weight. These observations indicate that antibody-directed cytokine delivery offers an effective new tool for cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5'-Deoxy-5'-methylthioadenosine phosphorylase (methylthioadeno-sine: ortho-phosphate methylthioribosyltransferase, EC 24.2.28; MTAP) plays a role in purine and polyamine metabolism and in the regulation of transmethylation reactions. MTAP is abundant in normal cells but is deficient in many cancers. Recently, the genes for the cyclin-dependent kinase inhibitors p16 and p15 have been localized to the short arm of human chromosome 9 at band p21, where MTAP and interferon alpha genes (IFNA) also map. Homozygous deletions of p16 and p15 are frequent malignant cell lines. However, the order of the MTAP, p16, p15, and IFNA genes on chromosome 9p is uncertain, and the molecular basis for MTAP deficiency in cancer is unknown. We have cloned the MTAP gene, and have constructed a topologic map of the 9p21 region using yeast artificial chromosome clones, pulse-field gel electrophoresis, and sequence-tagged-site PCR. The MTAP gene consists of eight exons and seven introns. Of 23 malignant cell lines deficient in MTAP protein, all but one had complete or partial deletions. Partial or total deletions of the MTAP gene were found in primary T-cell acute lymphoblastic leukemias (T-ALL). A deletion breakpoint of partial deletions found in cell lines and primary T-ALL was in intron 4. Starting from the centromeric end, the gene order on chromosome 9p2l is p15, p16, MTAP, IFNA, and interferon beta gene (IFNB). These results indicate that MTAP deficiency in cancer is primarily due to codeletion of the MTAP and p16 genes.